Câu hỏi:

19/09/2024 4,671

Gọi D là hình phẳng giới hạn bởi đồ thị của hai hàm số y = x2 và y = \[\sqrt x \] (Hình 14).

Gọi D là hình phẳng giới hạn bởi đồ thị của hai hàm số y = x2 và y = canx (Hình 14).  a) Tính diện tích của D.  b) Tính thể tích của khối tròn xoay tạo thành khi quay D quanh trục Ox. (ảnh 1)

a) Tính diện tích của D.

b) Tính thể tích của khối tròn xoay tạo thành khi quay D quanh trục Ox.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Diện tích hình phẳng D là:

\[S = \int\limits_0^1 {\left| {\sqrt x - {x^2}} \right|} dx = \int\limits_0^1 {\left( {\sqrt x - {x^2}} \right)} dx\]

\[ = \left. {\left( {\frac{{2x\sqrt x }}{3} - \frac{{{x^3}}}{3}} \right)} \right|_0^1 = \frac{1}{3}.\]

b) Thể tích của khối tròn xoay tạo thành khi quay D quanh trục Ox.

\[V = \pi \int\limits_0^1 {{{\left( {\sqrt x } \right)}^2}dx - } {\rm{ }}\pi \int\limits_0^1 {{{\left( {{x^2}} \right)}^2}dx} \]

    \[ = \pi \int\limits_0^1 {xdx} - \pi \int\limits_0^1 {{x^4}dx} \]

    \[ = \left. {\pi .\frac{{{x^2}}}{2}} \right|_0^1 - \left. {\pi .\frac{{{x^5}}}{5}} \right|_0^1 = \frac{{3\pi }}{{10}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích mặt nước hình tròn bán kính \[R = \sqrt {2 - {\mathop{\rm s}\nolimits} {\rm{inx}}} \] (dm) là:

\[S\left( x \right) = \pi {R^2} = \pi {\left( {\sqrt {2 - {\mathop{\rm s}\nolimits} {\rm{inx}}} } \right)^2} = \pi .\left( {2 - \sin {\rm{x}}} \right)\] (dm2).

Dung tích của bình là:

\[V = \int\limits_0^{\frac{{3\pi }}{2}} {S\left( x \right)dx = } \int\limits_0^{\frac{{3\pi }}{2}} {\pi \left( {2 - \sin x} \right)dx} \]

                       \[ = \left. {\pi \left( {2x + \cos x} \right)} \right|_0^{\frac{{3\pi }}{2}}\]

                                    \[ = \pi \left( {3\pi - 1} \right) \approx 26,47\] (dm3).

Lời giải

Chọn hệ trục tọa độ Oxy có trục hoành nằm dọc theo cạnh trên của mặt cắt ngang, trục tung đi qua đỉnh của parabol như hình bên. Khi đó, đường parabol có phương trình dạng y = ax2 – 2 (a > 2).

Mặt cắt ngang của lòng máng dẫn nước là hình phẳng giới hạn bởi một parabol và đường thẳng nằm ngang như Hình 15 (phần được tô màu xám). Tính diện tích của mặt cắt ngang đó. (ảnh 2)

Theo giả thiết, ta có y(1) = 0 a – 2 = 0 a = 2.

Suy ra phương trình parabol là y = 2x2 – 2.

Diện tích của phần lòng máng là:

 

\[S = \int\limits_{ - 1}^1 {\left( {2 - 2{x^2}} \right)dx = \left. {\left( {2x - \frac{{2{x^3}}}{3}} \right)} \right|_{ - 1}^1 = \frac{8}{3}} \] (m2).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP