Câu hỏi:

19/09/2024 8,920

Cho hàm số y = x2 – 2x có đồ thị (C). Kí hiệu A là hình phẳng giới hạn bởi (C), trục hoành và hai đường thẳng x = 0, x = 2; B là hình phẳng giới hạn bởi (C), trục hoành và hai đường thẳng x = 2, x = a (a > 2). Tìm giá trị của a để A và B có diện tích bằng nhau.

Cho hàm số y = x^2 – 2x có đồ thị (C). Kí hiệu A là hình phẳng giới hạn bởi (C), trục hoành và hai đường thẳng x = 0, x = 2; B là hình phẳng giới hạn bởi (C), trục hoành và hai đường thẳng x = 2, x = a (a > 2). Tìm giá trị của a để A và B có diện tích bằng nhau. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi SA, SB lần lượt là diện tích của hình phẳng A, B. Ta có:

\[{S_A} = \int\limits_0^2 {\left( {2x - {x^2}} \right)dx = } \left. {\left( {{x^2} - \frac{{{x^3}}}{3}} \right)} \right|_0^2 = \frac{4}{3};\]

\[{S_B} = \int\limits_2^a {\left( {{x^2} - 2x} \right)dx = \left. {\left( {\frac{{{x^3}}}{3} - {x^2}} \right)} \right|} _2^a\]

     \[ = \frac{{{a^3}}}{3} - {a^2} + \frac{4}{3}.\]

Theo đề bài, ta có: SA = SB \[\frac{{{a^3}}}{3} - {a^2} + \frac{4}{3} = \frac{4}{3}\] hay \[\frac{{{a^3}}}{3} - {a^2} = 0\] a = 0 hoặc a = 3.

Vì a > 2 nên a = 3 là giá trị thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích mặt nước hình tròn bán kính \[R = \sqrt {2 - {\mathop{\rm s}\nolimits} {\rm{inx}}} \] (dm) là:

\[S\left( x \right) = \pi {R^2} = \pi {\left( {\sqrt {2 - {\mathop{\rm s}\nolimits} {\rm{inx}}} } \right)^2} = \pi .\left( {2 - \sin {\rm{x}}} \right)\] (dm2).

Dung tích của bình là:

\[V = \int\limits_0^{\frac{{3\pi }}{2}} {S\left( x \right)dx = } \int\limits_0^{\frac{{3\pi }}{2}} {\pi \left( {2 - \sin x} \right)dx} \]

                       \[ = \left. {\pi \left( {2x + \cos x} \right)} \right|_0^{\frac{{3\pi }}{2}}\]

                                    \[ = \pi \left( {3\pi - 1} \right) \approx 26,47\] (dm3).

Lời giải

Chọn hệ trục tọa độ Oxy có trục hoành nằm dọc theo cạnh trên của mặt cắt ngang, trục tung đi qua đỉnh của parabol như hình bên. Khi đó, đường parabol có phương trình dạng y = ax2 – 2 (a > 2).

Mặt cắt ngang của lòng máng dẫn nước là hình phẳng giới hạn bởi một parabol và đường thẳng nằm ngang như Hình 15 (phần được tô màu xám). Tính diện tích của mặt cắt ngang đó. (ảnh 2)

Theo giả thiết, ta có y(1) = 0 a – 2 = 0 a = 2.

Suy ra phương trình parabol là y = 2x2 – 2.

Diện tích của phần lòng máng là:

 

\[S = \int\limits_{ - 1}^1 {\left( {2 - 2{x^2}} \right)dx = \left. {\left( {2x - \frac{{2{x^3}}}{3}} \right)} \right|_{ - 1}^1 = \frac{8}{3}} \] (m2).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP