Kí hiệu S(a) là diện tích hình phẳng giới hạn bởi đồ thị của hàm số y = \[\frac{3}{{{x^2}}}\], trục hoành và hai đường thẳng x = 1, x = a với a > 1 (Hình 12). Tính giới hạn \[\mathop {\lim }\limits_{a \to + \infty } S\left( a \right)\].
Kí hiệu S(a) là diện tích hình phẳng giới hạn bởi đồ thị của hàm số y = \[\frac{3}{{{x^2}}}\], trục hoành và hai đường thẳng x = 1, x = a với a > 1 (Hình 12). Tính giới hạn \[\mathop {\lim }\limits_{a \to + \infty } S\left( a \right)\].
![Kí hiệu S(a) là diện tích hình phẳng giới hạn bởi đồ thị của hàm số y = \3/x^2], trục hoành và hai đường thẳng x = 1, x = a với a > 1 (Hình 12). Tính giới hạn \ (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/09/blobid2-1726728323.png)
Quảng cáo
Trả lời:

Diện tích hình phẳng S(a) là:
\[S\left( a \right) = \int\limits_1^a {\frac{3}{{{x^2}}}} dx\]
\[ = 3\int\limits_1^a {\frac{1}{{{x^2}}}} dx = \left. {\frac{{ - 3}}{x}} \right|_1^a = 3\left( {1 - \frac{1}{a}} \right).\]
Ta có: \[\mathop {\lim }\limits_{a \to + \infty } S\left( a \right) = \mathop {\lim }\limits_{a \to + \infty } 3\left( {1 - \frac{1}{a}} \right) = 3.\]
Vậy \[\mathop {\lim }\limits_{a \to + \infty } S\left( a \right)\] = 3.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Diện tích mặt nước hình tròn bán kính \[R = \sqrt {2 - {\mathop{\rm s}\nolimits} {\rm{inx}}} \] (dm) là:
\[S\left( x \right) = \pi {R^2} = \pi {\left( {\sqrt {2 - {\mathop{\rm s}\nolimits} {\rm{inx}}} } \right)^2} = \pi .\left( {2 - \sin {\rm{x}}} \right)\] (dm2).
Dung tích của bình là:
\[V = \int\limits_0^{\frac{{3\pi }}{2}} {S\left( x \right)dx = } \int\limits_0^{\frac{{3\pi }}{2}} {\pi \left( {2 - \sin x} \right)dx} \]
\[ = \left. {\pi \left( {2x + \cos x} \right)} \right|_0^{\frac{{3\pi }}{2}}\]
\[ = \pi \left( {3\pi - 1} \right) \approx 26,47\] (dm3).
Lời giải
Chọn hệ trục tọa độ Oxy có trục hoành nằm dọc theo cạnh trên của mặt cắt ngang, trục tung đi qua đỉnh của parabol như hình bên. Khi đó, đường parabol có phương trình dạng y = ax2 – 2 (a > 2).

Theo giả thiết, ta có y(1) = 0 ⇔ a – 2 = 0 ⇔ a = 2.
Suy ra phương trình parabol là y = 2x2 – 2.
Diện tích của phần lòng máng là:
\[S = \int\limits_{ - 1}^1 {\left( {2 - 2{x^2}} \right)dx = \left. {\left( {2x - \frac{{2{x^3}}}{3}} \right)} \right|_{ - 1}^1 = \frac{8}{3}} \] (m2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.