Kí hiệu S(a) là diện tích hình phẳng giới hạn bởi đồ thị của hàm số y = \[\frac{3}{{{x^2}}}\], trục hoành và hai đường thẳng x = 1, x = a với a > 1 (Hình 12). Tính giới hạn \[\mathop {\lim }\limits_{a \to + \infty } S\left( a \right)\].
Kí hiệu S(a) là diện tích hình phẳng giới hạn bởi đồ thị của hàm số y = \[\frac{3}{{{x^2}}}\], trục hoành và hai đường thẳng x = 1, x = a với a > 1 (Hình 12). Tính giới hạn \[\mathop {\lim }\limits_{a \to + \infty } S\left( a \right)\].
![Kí hiệu S(a) là diện tích hình phẳng giới hạn bởi đồ thị của hàm số y = \3/x^2], trục hoành và hai đường thẳng x = 1, x = a với a > 1 (Hình 12). Tính giới hạn \ (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/09/blobid2-1726728323.png)
Quảng cáo
Trả lời:
Diện tích hình phẳng S(a) là:
\[S\left( a \right) = \int\limits_1^a {\frac{3}{{{x^2}}}} dx\]
\[ = 3\int\limits_1^a {\frac{1}{{{x^2}}}} dx = \left. {\frac{{ - 3}}{x}} \right|_1^a = 3\left( {1 - \frac{1}{a}} \right).\]
Ta có: \[\mathop {\lim }\limits_{a \to + \infty } S\left( a \right) = \mathop {\lim }\limits_{a \to + \infty } 3\left( {1 - \frac{1}{a}} \right) = 3.\]
Vậy \[\mathop {\lim }\limits_{a \to + \infty } S\left( a \right)\] = 3.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Diện tích mặt nước hình tròn bán kính \[R = \sqrt {2 - {\mathop{\rm s}\nolimits} {\rm{inx}}} \] (dm) là:
\[S\left( x \right) = \pi {R^2} = \pi {\left( {\sqrt {2 - {\mathop{\rm s}\nolimits} {\rm{inx}}} } \right)^2} = \pi .\left( {2 - \sin {\rm{x}}} \right)\] (dm2).
Dung tích của bình là:
\[V = \int\limits_0^{\frac{{3\pi }}{2}} {S\left( x \right)dx = } \int\limits_0^{\frac{{3\pi }}{2}} {\pi \left( {2 - \sin x} \right)dx} \]
\[ = \left. {\pi \left( {2x + \cos x} \right)} \right|_0^{\frac{{3\pi }}{2}}\]
\[ = \pi \left( {3\pi - 1} \right) \approx 26,47\] (dm3).
Lời giải
Chọn hệ trục Oxy, ta có hình vẽ sau:

Dung tích của bể cá là:
\[V = \pi \int\limits_{ - 2}^1 {{{\left( {\sqrt {4 - {x^2}} } \right)}^2}dx = \pi \int\limits_{ - 2}^1 {\left( {4 - {x^2}} \right)dx} } \]
\[ = \left. {\pi \left( {4x - \frac{{{x^3}}}{3}} \right)} \right|_{ - 2}^1 = 9\pi \approx 28,3\] (dm3).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



