Câu hỏi:

19/09/2024 1,070

Một bể cá có dạng là một phần hình cầu được tạo thành khi cắt hình cầu bán kính 2 dm bằng mặt phẳng cách tâm của hình cầu 1 dm (Hình 16). Tính dung tích của bể cá (kết quả làm tròn đến hàng phần mười của đềximét khối).

Một bể cá có dạng là một phần hình cầu được tạo thành khi cắt hình cầu bán kính 2 dm bằng mặt phẳng cách tâm của hình cầu 1 dm (Hình 16). Tính dung tích của bể cá (kết quả làm tròn đến hàng phần mười của đềximét khối). (ảnh 1)

Gợi ý: có thể coi bể cá là khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số \[y = \sqrt {4 - {x^2}} \] với −2 ≤ x ≤ 1, trục hoành và đường thẳng x = 1 quanh trục hoành.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn hệ trục Oxy, ta có hình vẽ sau:

Một bể cá có dạng là một phần hình cầu được tạo thành khi cắt hình cầu bán kính 2 dm bằng mặt phẳng cách tâm của hình cầu 1 dm (Hình 16). Tính dung tích của bể cá (kết quả làm tròn đến hàng phần mười của đềximét khối). (ảnh 2)

Dung tích của bể cá là:

\[V = \pi \int\limits_{ - 2}^1 {{{\left( {\sqrt {4 - {x^2}} } \right)}^2}dx = \pi \int\limits_{ - 2}^1 {\left( {4 - {x^2}} \right)dx} } \]

     \[ = \left. {\pi \left( {4x - \frac{{{x^3}}}{3}} \right)} \right|_{ - 2}^1 = 9\pi \approx 28,3\] (dm3).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Mặt cắt ngang của lòng máng dẫn nước là hình phẳng giới hạn bởi một parabol và đường thẳng nằm ngang như Hình 15 (phần được tô màu xám). Tính diện tích của mặt cắt ngang đó.

Mặt cắt ngang của lòng máng dẫn nước là hình phẳng giới hạn bởi một parabol và đường thẳng nằm ngang như Hình 15 (phần được tô màu xám). Tính diện tích của mặt cắt ngang đó. (ảnh 1)

Xem đáp án » 19/09/2024 1,105

Câu 2:

Kí hiệu S(a) là diện tích hình phẳng giới hạn bởi đồ thị của hàm số y = \[\frac{3}{{{x^2}}}\], trục hoành và hai đường thẳng x = 1, x = a với a > 1 (Hình 12). Tính giới hạn \[\mathop {\lim }\limits_{a \to  + \infty } S\left( a \right)\].

Kí hiệu S(a) là diện tích hình phẳng giới hạn bởi đồ thị của hàm số y = \3/x^2], trục hoành và hai đường thẳng x = 1, x = a với a > 1 (Hình 12). Tính giới hạn \ (ảnh 1)

Xem đáp án » 19/09/2024 1,005

Câu 3:

Một bình chứa nước dạng như Hình 13 có chiều cao là \[\frac{{3\pi }}{2}\] dm. Nếu lượng nước trong bình có chiều cao là x (dm) thì mặt nước là hình tròn có bán kính \[\sqrt {2 - {\mathop{\rm s}\nolimits} {\rm{inx}}} \] (dm) với 0 ≤ x ≤ \[\frac{{3\pi }}{2}\]. Tính dung tích của hình (kết quả làm tròn đến hàng phần trăm của đềximét khối).

Một bình chứa nước dạng như Hình 13 có chiều cao là 3pi/2 dm. Nếu lượng nước trong bình có chiều cao là x (dm) thì mặt nước là hình tròn có bán kính (ảnh 1)

Xem đáp án » 19/09/2024 928

Câu 4:

Cho hàm số y = x2 – 2x có đồ thị (C). Kí hiệu A là hình phẳng giới hạn bởi (C), trục hoành và hai đường thẳng x = 0, x = 2; B là hình phẳng giới hạn bởi (C), trục hoành và hai đường thẳng x = 2, x = a (a > 2). Tìm giá trị của a để A và B có diện tích bằng nhau.

Cho hàm số y = x^2 – 2x có đồ thị (C). Kí hiệu A là hình phẳng giới hạn bởi (C), trục hoành và hai đường thẳng x = 0, x = 2; B là hình phẳng giới hạn bởi (C), trục hoành và hai đường thẳng x = 2, x = a (a > 2). Tìm giá trị của a để A và B có diện tích bằng nhau. (ảnh 1)

Xem đáp án » 19/09/2024 868

Câu 5:

Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số

a) y = x2 + 2x + 1, y = 1 – 2x và hai đường thẳng x = −1 và x = 2.

b) y = x – 4x3, y = 2x và hai đường thẳng x = 1, x = 4.

Xem đáp án » 19/09/2024 602

Câu 6:

Tính diện tích hình phẳng giới hạn bởi

a) Đồ thị của hàm số y = 3x(2 – x), trục hoành với hai đường thẳng x = −1, x = 1.

b) Đồ thị của hàm số \[y = \frac{{4 - x}}{x}\], trục hoành và hai đường thẳng x = 1, x = 2.

c) Đồ thị của hàm số y = x3 – x2 , trục hoành và hai đường thẳng x = 0, x = 2.

Xem đáp án » 19/09/2024 406

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store