Giải SGK Toán 12 CTST Bài 1. Nguyên hàm có đáp án
53 người thi tuần này 4.6 545 lượt thi 24 câu hỏi
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Sau khi học xong bài này, ta sẽ giải quyết bài toán này như sau:
Kí hiệu v(t) là tốc độ của vật, s(t) là quãng đường vật đi được cho đến thời điểm t giây kể từ khi vật bắt đầu rơi.
Vì a(t) = v'(t) với mọi t ≥ 0 nên \(v\left( t \right) = \int {a\left( t \right)dt = \int {10dt = 10t + C} } \).
Vì v(0) = 0 nên C = 0. Vậy v(t) = 10t (m/s).
Vì v(t) = s'(t) với mọi t ≥ 0 nên \(s\left( t \right) = \int {v\left( t \right)} dt = \int {10tdt} = 5{t^2} + C\).
Ta có s(0) = 0 nên C = 0. Vậy s(t) = 5t2 (m).
Vật rơi từ độ cao 20 m nên s(t) ≤ 20, suy ra 0 ≤ t ≤ 2.
Vậy sau khi vật rơi được t giây (0 ≤ t ≤ 2) thì vật có tốc độ v(t) = 10t m/s và đi được quãng đường s(t) = 5t2 mét.
Lời giải
Ta có F(x) = x2 vì (x2)' = 2x.
Lời giải
a) Ta có F'(x) = (x3)' = 3x2 = f(x).
Do đó F(x) = x3 là một nguyên hàm của f(x) trên ℝ.
b) Có H(x) = F(x) + C = x3 + C.
Có H'(x) = (x3 + C)' = 3x2 = f(x).
Do đó hàm số H(x) = F(x) + C cũng là nguyên hàm của f(x) trên ℝ.
c) Có (G(x) – F(x))' = G'(x) – F'(x) = f(x) – f(x) = 0.
Vì (G(x) – F(x))' = 0 nên G(x) – F(x) là một hằng số.
Hay G(x) = F(x) + C, C là hằng số bất kì.
Lời giải
Có F'(x) = (e2x + 1)' = e2x + 1.(2x + 1)' = 2e2x + 1 = f(x).
Vậy F(x) = e2x + 1 là một nguyên hàm của hàm số f(x) = 2e2x + 1 trên ℝ.
Lời giải
a) Vì (C)' = 0 nên \(\int {0dx = C} \).
Vì (x + C)' = 1 nên \(\int {1dx = x + C} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
109 Đánh giá
50%
40%
0%
0%
0%