Giải SGK Toán 12 CTST Bài 1. Phương trình mặt phẳng có đáp án
34 người thi tuần này 4.6 695 lượt thi 33 câu hỏi
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
191 câu Bài tập số phức mức độ cơ bản, nâng cao cực hay có lời giải chi tiết(P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Trong không gian Oxyz, để xác định một mặt phẳng ta cần biết được 1 điểm mà đường thẳng đó đi và một vectơ pháp tuyến của mặt phẳng đó.
Lời giải
a) Qua một điểm M0 cố định trong không gian, có một mặt phẳng (α) vuông góc với giá của vectơ \(\overrightarrow n \).
b) Qua một điểm M0 cố định trong không gian, có một mặt phẳng (α) song song hoặc chứa giá của hai vectơ \(\overrightarrow a ,\overrightarrow b \).
Lời giải

a) \(\overrightarrow {AB} = \left( { - 3;4;0} \right),\overrightarrow {AC} = \left( { - 3;0;5} \right)\) là cặp vectơ chỉ phương của mặt phẳng (ABC).
b) Ta có (OAB) Ì (Oxy) mà Oz ^ (Oxy). Do đó \(\overrightarrow k = \left( {0;0;1} \right)\) là một vectơ pháp tuyến của mặt phẳng (OAB).
Lời giải
+) \(\overrightarrow {A'B'} ,\overrightarrow {A'C'} \) là cặp vectơ chỉ phương của mặt phẳng (A'B'C').
+) Vì BB' ^ (A'B'C') nên \(\overrightarrow {BB'} \) là một vectơ pháp tuyến của mặt phẳng (A'B'C').
Lời giải
a) \(\overrightarrow n = \left( {{a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1}} \right) \ne \overrightarrow 0 \).
b) Ta có \(\overrightarrow a .\overrightarrow n = {a_1}.\left( {{a_2}{b_3} - {a_3}{b_2}} \right) + {a_2}.\left( {{a_3}{b_1} - {a_1}{b_3}} \right) + {a_3}.\left( {{a_1}{b_2} - {a_2}{b_1}} \right)\)
\( = \left( {{a_1}{a_2}{b_3} - {a_1}{a_3}{b_2}} \right) + \left( {{a_2}{a_3}{b_1} - {a_2}{a_1}{b_3}} \right) + \left( {{a_3}{a_1}{b_2} - {a_3}{a_2}{b_1}} \right)\)
\( = \left( {{a_1}{a_2}{b_3} - {a_2}{a_1}{b_3}} \right) + \left( {{a_2}{a_3}{b_1} - {a_3}{a_2}{b_1}} \right) + \left( {{a_3}{a_1}{b_2} - {a_1}{a_3}{b_2}} \right) = 0\).
\(\overrightarrow b .\overrightarrow n = {b_1}.\left( {{a_2}{b_3} - {a_3}{b_2}} \right) + {b_2}.\left( {{a_3}{b_1} - {a_1}{b_3}} \right) + {b_3}.\left( {{a_1}{b_2} - {a_2}{b_1}} \right)\)
\( = \left( {{a_2}{b_3}{b_1} - {a_3}{b_2}{b_1}} \right) + \left( {{a_3}{b_1}{b_2} - {a_1}{b_3}{b_2}} \right) + \left( {{a_1}{b_2}{b_3} - {a_2}{b_1}{b_3}} \right)\)
\( = \left( {{a_2}{b_3}{b_1} - {a_2}{b_1}{b_3}} \right) + \left( {{a_3}{b_1}{b_2} - {a_3}{b_2}{b_1}} \right) + \left( {{a_1}{b_2}{b_3} - {a_1}{b_3}{b_2}} \right) = 0\).
c) Vì \(\overrightarrow a .\overrightarrow n = 0;\overrightarrow b .\overrightarrow n = 0\) nên \(\overrightarrow a \bot \overrightarrow n ;\overrightarrow b \bot \overrightarrow n \).
Do đó \(\overrightarrow n \) là vectơ pháp tuyến của mặt phẳng (α).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.











