Trong không gian Oxyz, cho mặt phẳng (α) có cặp vectơ chỉ phương \(\overrightarrow a = \left( {{a_1};{a_2};{a_3}} \right)\), \(\overrightarrow b = \left( {{b_1};{b_2};{b_3}} \right)\). Xét vectơ \(\overrightarrow n = \left( {{a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1}} \right)\).
a) Vectơ \(\overrightarrow n \) có khác \(\overrightarrow 0 \) hay không?
b) Tính \(\overrightarrow a .\overrightarrow n ;\overrightarrow b .\overrightarrow n \).
c) Vectơ \(\overrightarrow n \) có phải là vectơ pháp tuyến của mặt phẳng (α) không?
Trong không gian Oxyz, cho mặt phẳng (α) có cặp vectơ chỉ phương \(\overrightarrow a = \left( {{a_1};{a_2};{a_3}} \right)\), \(\overrightarrow b = \left( {{b_1};{b_2};{b_3}} \right)\). Xét vectơ \(\overrightarrow n = \left( {{a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1}} \right)\).
a) Vectơ \(\overrightarrow n \) có khác \(\overrightarrow 0 \) hay không?
b) Tính \(\overrightarrow a .\overrightarrow n ;\overrightarrow b .\overrightarrow n \).
c) Vectơ \(\overrightarrow n \) có phải là vectơ pháp tuyến của mặt phẳng (α) không?
Quảng cáo
Trả lời:
a) \(\overrightarrow n = \left( {{a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1}} \right) \ne \overrightarrow 0 \).
b) Ta có \(\overrightarrow a .\overrightarrow n = {a_1}.\left( {{a_2}{b_3} - {a_3}{b_2}} \right) + {a_2}.\left( {{a_3}{b_1} - {a_1}{b_3}} \right) + {a_3}.\left( {{a_1}{b_2} - {a_2}{b_1}} \right)\)
\( = \left( {{a_1}{a_2}{b_3} - {a_1}{a_3}{b_2}} \right) + \left( {{a_2}{a_3}{b_1} - {a_2}{a_1}{b_3}} \right) + \left( {{a_3}{a_1}{b_2} - {a_3}{a_2}{b_1}} \right)\)
\( = \left( {{a_1}{a_2}{b_3} - {a_2}{a_1}{b_3}} \right) + \left( {{a_2}{a_3}{b_1} - {a_3}{a_2}{b_1}} \right) + \left( {{a_3}{a_1}{b_2} - {a_1}{a_3}{b_2}} \right) = 0\).
\(\overrightarrow b .\overrightarrow n = {b_1}.\left( {{a_2}{b_3} - {a_3}{b_2}} \right) + {b_2}.\left( {{a_3}{b_1} - {a_1}{b_3}} \right) + {b_3}.\left( {{a_1}{b_2} - {a_2}{b_1}} \right)\)
\( = \left( {{a_2}{b_3}{b_1} - {a_3}{b_2}{b_1}} \right) + \left( {{a_3}{b_1}{b_2} - {a_1}{b_3}{b_2}} \right) + \left( {{a_1}{b_2}{b_3} - {a_2}{b_1}{b_3}} \right)\)
\( = \left( {{a_2}{b_3}{b_1} - {a_2}{b_1}{b_3}} \right) + \left( {{a_3}{b_1}{b_2} - {a_3}{b_2}{b_1}} \right) + \left( {{a_1}{b_2}{b_3} - {a_1}{b_3}{b_2}} \right) = 0\).
c) Vì \(\overrightarrow a .\overrightarrow n = 0;\overrightarrow b .\overrightarrow n = 0\) nên \(\overrightarrow a \bot \overrightarrow n ;\overrightarrow b \bot \overrightarrow n \).
Do đó \(\overrightarrow n \) là vectơ pháp tuyến của mặt phẳng (α).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử quả bóng rơi tại vị trí A, B là vị trí bạn nam đứng.
Xét DOAB vuông tại B, có \(OB = \sqrt {O{A^2} - A{B^2}} = \sqrt {25 - 9} = 4\).
Vì A Î (Oxy) nên A(3; 4; 0). Suy ra \(\overrightarrow {OA} = \left( {3;4;0} \right)\)
Mặt phẳng mặt đất Oxy có một vectơ pháp tuyến là \(\overrightarrow k = \left( {0;0;1} \right)\).
Có \(\left[ {\overrightarrow {OA} ,\overrightarrow k } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&0\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&3\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&4\\0&0\end{array}} \right|} \right) = \left( {4; - 3;0} \right)\).
Khi đó mặt phẳng (P) đi qua O(0; 0; 0) và có vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {OA} ,\overrightarrow k } \right] = \left( {4; - 3;0} \right)\) có phương trình là 4x – 3y = 0.
Lời giải
Vì ABCD là hình vuông cạnh \(a\sqrt 2 \) và O là tâm của hình vuông nên ta có:
\(OA = OB = OC = OD = a\).
Khi đó ta có O(0; 0; 0), A(−a; 0; 0), B(0; a; 0), S(0; 0; 2a), C(a; 0; 0).
Mặt phẳng (SAB) đi qua A(−a; 0; 0), B(0; a; 0), S(0; 0; 2a) có phương trình theo đoạn chắn là:
\(\frac{x}{{ - a}} + \frac{y}{a} + \frac{z}{{2a}} = 1\) hay −2x + 2y + z = 2a hay −2x + 2y + z – 2a = 0.
Ta có \(d\left( {C,\left( {SAB} \right)} \right) = \frac{{\left| { - 2a - 2a} \right|}}{{\sqrt {{{\left( { - 2} \right)}^2} + {2^2} + {1^2}} }} = \frac{{4a}}{3}\).
Vậy \(d\left( {C,\left( {SAB} \right)} \right) = \frac{4}{3}a\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



