Câu hỏi:

13/07/2024 65,850

Hai học sinh đang chuyền bóng. Bạn nữ ném bóng cho bạn nam. Quả bóng bay trên không, lệch sang phải và rơi xuống tại vị trí cách bạn nam 3 m, cách bạn nữ 5 m (Hình 16). Cho biết quỹ đạo của quả bóng nằm trong mặt phẳng (P) vuông góc với mặt đất. Hãy viết phương trình của (P) trong không gian Oxyz được mô tả như trong hình vẽ.

Hai học sinh đang chuyền bóng. Bạn nữ ném bóng cho bạn nam. Quả bóng bay trên không, lệch sang phải và rơi xuống tại vị trí cách bạn nam 3 m, cách bạn nữ 5 m (Hình 16). Cho biết quỹ đạo của quả bóng nằm trong (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Hai học sinh đang chuyền bóng. Bạn nữ ném bóng cho bạn nam. Quả bóng bay trên không, lệch sang phải và rơi xuống tại vị trí cách bạn nam 3 m, cách bạn nữ 5 m (Hình 16). Cho biết quỹ đạo của quả bóng nằm trong (ảnh 2)

Giả sử quả bóng rơi tại vị trí A, B là vị trí bạn nam đứng.

Xét DOAB vuông tại B, có \(OB = \sqrt {O{A^2} - A{B^2}} = \sqrt {25 - 9} = 4\).

Vì A Î (Oxy) nên A(3; 4; 0). Suy ra \(\overrightarrow {OA} = \left( {3;4;0} \right)\)

Mặt phẳng mặt đất Oxy có một vectơ pháp tuyến là \(\overrightarrow k = \left( {0;0;1} \right)\).

\(\left[ {\overrightarrow {OA} ,\overrightarrow k } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&0\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&3\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&4\\0&0\end{array}} \right|} \right) = \left( {4; - 3;0} \right)\).

Khi đó mặt phẳng (P) đi qua O(0; 0; 0) và có vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {OA} ,\overrightarrow k } \right] = \left( {4; - 3;0} \right)\) có phương trình là 4x – 3y = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Có \(\left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {\left| {\begin{array}{*{20}{c}}3&1\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&1\\1&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&3\\2&0\end{array}} \right|} \right) = \left( {3;1; - 6} \right)\).

Mặt phẳng (α) nhận \(\overrightarrow n = \left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {3;1; - 6} \right)\) làm một vectơ pháp tuyến.

b) Mặt phẳng (α) đi qua M(0; 2; 1) và nhận \(\overrightarrow n = \left( {3;1; - 6} \right)\) làm một vectơ pháp tuyến có phương trình là: 3x + (y – 2) – 6(z – 1) = 0 Û 3x + y – 6z + 4 = 0.

Lời giải

Mặt phẳng (P) có một vectơ pháp tuyến là \(\overrightarrow {{n_P}} = \left( {6;5;1} \right)\).

Vì (P) // (Q) nên mặt phẳng (Q) nhận \(\overrightarrow {{n_P}} = \left( {6;5;1} \right)\) làm một vectơ pháp tuyến.

Mặt phẳng (Q) đi qua điểm M(1; 1; 1) và nhận \(\overrightarrow {{n_P}} = \left( {6;5;1} \right)\) làm một vectơ pháp tuyến có phương trình là 6(x – 1) + 5(y – 1) + (z – 1) = 0 Û 6x + 5y + z – 12 = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP