Giải SBT Toán 12 Chân trời sáng tạo Bài 1. Phương trình mặt phẳng có đáp án

39 người thi tuần này 4.6 144 lượt thi 7 câu hỏi

🔥 Đề thi HOT:

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Cho mặt phẳng (Q) nhận \[\overrightarrow a  = \left( {4;0;1} \right)\],  \[\overrightarrow b  = \left( {2;1;1} \right)\] làm cặp vectơ chỉ phương. Tìm một vectơ pháp tuyến của (Q).

Lời giải

Tích có hướng của hai vectơ \[\overrightarrow a ,\overrightarrow b \] là:

\[\left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&1\\1&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&4\\1&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}4&0\\2&1\end{array}} \right|} \right) = \left( { - 1; - 2;4} \right)\].

Do đó, (Q) có một vectơ pháp tuyến là \[\overrightarrow n  = \left( { - 1; - 2;4} \right)\].

Câu 2

Lập phương trình mặt phẳng (P) trong mỗi trường hợp sau:

a) (P) đi qua điểm M(1; 2; 3) và có vectơ pháp tuyến \[\overrightarrow n  = \left( {3;1; - 2} \right)\];

b) (P) đi qua điểm N(−2; 3; 0) và có cặp vectơ chỉ phương \[\overrightarrow u  = \left( {1;1;1} \right)\], \[\overrightarrow v  = \left( {3;0;4} \right)\].

c) (P) đi qua ba điểm A(1; 2; 2), B(5; 3; 2), C(2; 4; 2);

d) (P) cắt ba trục tọa độ lần lượt tại các điểm M(3; 0; 0), N(0; 1; 0), P(0; 0; 2).

Lời giải

a) Phương trình mặt phẳng (P) đó là: 3(x – 1) + 1(y – 2) + (−2)(z – 3) = 0 hay

3x + y – 2z + 1 = 0.

b) Ta có: \[\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&1\\0&4\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&1\\4&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&1\\3&0\end{array}} \right|} \right)\] = (4; −1; −3).

Do đó vectơ pháp tuyến của mặt phẳng (P) là \[\overrightarrow n = \left( {4; - 1; - 3} \right)\].

Phương trình mặt phẳng (P) là:

4(x + 2) – 1(y – 3) – 3(z – 0) = 0 hay 4x – y – 3z + 11 = 0.

c) Ta có: \[\overrightarrow {AB} = \left( {4;1;0} \right)\], \[\overrightarrow {AC} = \left( {1;2;0} \right)\].

\[\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&0\\2&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&4\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}4&1\\1&2\end{array}} \right|} \right)\] = (0; 0; 7) = 7(0; 0; 1).

Do đó, \[\overrightarrow n = \left( {0;0;1} \right)\] là vectơ pháp tuyến của mặt phẳng (P).

Phương trình mặt phẳng (P) là: z – 2 = 0.

d) (P) cắt ba trục tọa độ lần lượt tại các điểm M(3; 0; 0), N(0; 1; 0), P(0; 0; 2) nên phương trình mặt phẳng (P) là: \[\frac{x}{3} + \frac{y}{1} + \frac{z}{2} = 1\] hay 2x + 6y + 3z – 6 = 0.

Câu 3

Tìm các cặp mặt phẳng song song hoặc vuông góc trong các mặt phẳng sau: (P): x + y – z + 3 = 0, (Q): 2x + 2y – 2z + 99 = 0,

(R): 3x + 3y + 6z + 7 = 0.

Lời giải

Các mặt phẳng (P), (Q), (R) có các vectơ pháp tuyến lần lượt là

\[\overrightarrow {{n_1}} = \left( {1;1; - 1} \right),\overrightarrow {{n_2}} = \left( {2;2; - 2} \right),\overrightarrow {{n_3}} = \left( {3;3;6} \right)\].

Ta có: \[\overrightarrow {{n_2}} = \left( {2;2; - 2} \right) = 2\left( {1;1; - 1} \right) = 2\overrightarrow {{n_1}} \] và 99 ≠ 2.3 nên (P) (Q).

          \[\overrightarrow {{n_1}} .\overrightarrow {{n_3}} = 1.3 + 1.3 + \left( { - 1} \right).6 = 0\] nên (P) (R).

Vậy (P) (Q), (P) (R), (Q) (R).

Câu 4

Tính khoảng cách từ điểm A(1; 2; 3) đến các mặt phẳng sau:

a) (P): 3x + 4z + 10 = 0;

b) (Q): 2x – 10 = 0;

c) (R): 2x + 2y + z – 3 = 0.

Lời giải

a) d(A, (P)) = \[\frac{{\left| {3.1 + 2.0 + 4.3 + 10} \right|}}{{\sqrt {{3^2} + {0^2} + {4^2}} }}\] = 5.

b) d(A, (Q)) = \[\frac{{\left| {2.1 + 2.0 + 3.0 - 10} \right|}}{{\sqrt {{2^2} + {0^2} + {0^2}} }}\] = 4.

c) d(A, (R)) = \[\frac{{\left| {2.1 + 2.2 + 3.1 - 3} \right|}}{{\sqrt {{2^2} + {2^2} + {1^2}} }}\] = 2.

Câu 5

Cho hai mặt phẳng (P): 2x + y + 2z + 12 = 0, (Q): 4x + 2y + 4z – 6 = 0.

a) Chứng minh (P) ∥ (Q).

b) Tính khoảng cách giữa hai mặt phẳng (P) và (Q).

Lời giải

a) Xét hai mặt phẳng (P): 2x + y + 2z + 12 = 0, (Q): 4x + 2y + 4z – 6 = 0, ta có:

\[\frac{2}{4} = \frac{1}{2} = \frac{2}{4} \ne \frac{{12}}{{ - 6}}\] nên (P) ∥ (Q).

b) Trên mặt phẳng (Q) lấy M(0; 1; 1) ∈ (Q).

Ta có: P((P), (Q)) = d(M, (P)) = \[\frac{{\left| {2.0 + 1.1 + 2.1 + 12} \right|}}{{\sqrt {{2^2} + {1^2} + {2^2}} }} = \frac{{15}}{3}\]= 5.

Câu 6

Cho hình hộp chữ nhật ABCD.A'B'C'D' có DA = 2, DC = 3, DD' = 2. Tính khoảng cách từ đỉnh B' đến mặt phẳng (BA'C').

Lời giải

Cho hình hộp chữ nhật ABCD.A'B'C'D' có DA = 2, DC = 3, DD' = 2. Tính khoảng cách từ đỉnh B' đến mặt phẳng (BA'C'). (ảnh 1)

Chọn hệ tọa độ Oxyz sao cho gốc tọa độ O trùng với điểm D.

Khi đó, tọa độ các đỉnh của hình chữ nhật ABCD.A'B'C'D' lần lượt là D(0; 0; 0),

A(2; 0; 0), C(0; 3; 0), B(2; 3; 0), D'(0; 0; 2), A'(2; 0; 2), B'(2; 3; 2), C'(0; 3; 2).

Mặt phẳng (BA'C') có cặp vectơ chỉ phương là \[\overrightarrow {BA'}  = \left( {0; - 3;2} \right)\], \[\overrightarrow {BC'}  = \left( { - 2;0;2} \right)\].

Ta có: \[\overrightarrow n  = \left[ {\overrightarrow {BA'} ,\overrightarrow {BC'} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 3}&2\\0&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&0\\2&{ - 2}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - 3}\\{ - 2}&0\end{array}} \right|} \right)\] = (−6; −4; −6) = −2(3; 2; 3).

Do đó, \[\overrightarrow n \] = (3; 2; 3). Phương trình mặt phẳng (BA'C') là:

3(x – 2) + 2(y – 3) + 3z = 0 hay 3x + 2y + 3z – 12 = 0.

Khoảng cách từ đỉnh B' đến mặt phẳng (BA'C') là:

d(B', (BA'C')) = \[\frac{{\left| {3.2 + 2.3 + 3.2 - 12} \right|}}{{\sqrt {{3^2} + {2^2} + {3^2}} }} = \frac{{3\sqrt {22} }}{{11}}\].

Câu 7

Một kĩ sư xây dựng thiết kế khung một ngôi nhà trong không gian Oxyz như Hình 9 nhờ một phần mềm đồ họa máy tính.

Một kĩ sư xây dựng thiết kế khung một ngôi nhà trong không gian Oxyz như Hình 9 nhờ một phần mềm đồ họa máy tính.  a) Viết phương trình mặt phẳng mái nhà (DEMN).  b) Tính khoảng cách từ điểm B đến mái nhà (DEMN). (ảnh 1)

a) Viết phương trình mặt phẳng mái nhà (DEMN).

b) Tính khoảng cách từ điểm B đến mái nhà (DEMN).

Lời giải

a) Ta có: \[\overrightarrow {DE}  = \left( {6;0;0} \right),\overrightarrow {DN}  = \left( {0;2;2} \right)\].

Ta có: \[\overrightarrow n  = \left[ {\overrightarrow {DE} ,\overrightarrow {DN} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&0\\2&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&6\\2&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}6&0\\0&2\end{array}} \right|} \right)\] = (0; −12; 12) = −12(0; 1; −1).

Vậy \[\overrightarrow n  = \left( {0;1; - 1} \right)\] là vectơ pháp tuyến của mặt phẳng (DEMN).

Phương trình của mặt phẳng (DEMN) là 1(y – 0) – 1(z – 4) = 0 hay y – z + 4 = 0.

b) Ta có B(6; 4; 0) nên d(B,(DEMN)) = \[\frac{{\left| {4 + 4} \right|}}{{\sqrt {{0^2} + {1^2} + {{\left( { - 1} \right)}^2}} }} = \frac{8}{{\sqrt 2 }} = 4\sqrt 2 \].

4.6

29 Đánh giá

50%

40%

0%

0%

0%