Câu hỏi:
19/09/2024 266Lập phương trình mặt phẳng (P) trong mỗi trường hợp sau:
a) (P) đi qua điểm M(1; 2; 3) và có vectơ pháp tuyến \[\overrightarrow n = \left( {3;1; - 2} \right)\];
b) (P) đi qua điểm N(−2; 3; 0) và có cặp vectơ chỉ phương \[\overrightarrow u = \left( {1;1;1} \right)\], \[\overrightarrow v = \left( {3;0;4} \right)\].
c) (P) đi qua ba điểm A(1; 2; 2), B(5; 3; 2), C(2; 4; 2);
d) (P) cắt ba trục tọa độ lần lượt tại các điểm M(3; 0; 0), N(0; 1; 0), P(0; 0; 2).
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Phương trình mặt phẳng (P) đó là: 3(x – 1) + 1(y – 2) + (−2)(z – 3) = 0 hay
3x + y – 2z + 1 = 0.
b) Ta có: \[\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&1\\0&4\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&1\\4&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&1\\3&0\end{array}} \right|} \right)\] = (4; −1; −3).
Do đó vectơ pháp tuyến của mặt phẳng (P) là \[\overrightarrow n = \left( {4; - 1; - 3} \right)\].
Phương trình mặt phẳng (P) là:
4(x + 2) – 1(y – 3) – 3(z – 0) = 0 hay 4x – y – 3z + 11 = 0.
c) Ta có: \[\overrightarrow {AB} = \left( {4;1;0} \right)\], \[\overrightarrow {AC} = \left( {1;2;0} \right)\].
\[\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&0\\2&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&4\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}4&1\\1&2\end{array}} \right|} \right)\] = (0; 0; 7) = 7(0; 0; 1).
Do đó, \[\overrightarrow n = \left( {0;0;1} \right)\] là vectơ pháp tuyến của mặt phẳng (P).
Phương trình mặt phẳng (P) là: z – 2 = 0.
d) (P) cắt ba trục tọa độ lần lượt tại các điểm M(3; 0; 0), N(0; 1; 0), P(0; 0; 2) nên phương trình mặt phẳng (P) là: \[\frac{x}{3} + \frac{y}{1} + \frac{z}{2} = 1\] hay 2x + 6y + 3z – 6 = 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một kĩ sư xây dựng thiết kế khung một ngôi nhà trong không gian Oxyz như Hình 9 nhờ một phần mềm đồ họa máy tính.
a) Viết phương trình mặt phẳng mái nhà (DEMN).
b) Tính khoảng cách từ điểm B đến mái nhà (DEMN).
Câu 2:
Cho hình hộp chữ nhật ABCD.A'B'C'D' có DA = 2, DC = 3, DD' = 2. Tính khoảng cách từ đỉnh B' đến mặt phẳng (BA'C').
Câu 3:
Cho hai mặt phẳng (P): 2x + y + 2z + 12 = 0, (Q): 4x + 2y + 4z – 6 = 0.
a) Chứng minh (P) ∥ (Q).
b) Tính khoảng cách giữa hai mặt phẳng (P) và (Q).
Câu 4:
Tìm các cặp mặt phẳng song song hoặc vuông góc trong các mặt phẳng sau: (P): x + y – z + 3 = 0, (Q): 2x + 2y – 2z + 99 = 0,
(R): 3x + 3y + 6z + 7 = 0.
Câu 5:
Cho mặt phẳng (Q) nhận \[\overrightarrow a = \left( {4;0;1} \right)\], \[\overrightarrow b = \left( {2;1;1} \right)\] làm cặp vectơ chỉ phương. Tìm một vectơ pháp tuyến của (Q).
Câu 6:
Tính khoảng cách từ điểm A(1; 2; 3) đến các mặt phẳng sau:
a) (P): 3x + 4z + 10 = 0;
b) (Q): 2x – 10 = 0;
c) (R): 2x + 2y + z – 3 = 0.
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
về câu hỏi!