Câu hỏi:

19/09/2024 111

Tìm các cặp mặt phẳng song song hoặc vuông góc trong các mặt phẳng sau: (P): x + y – z + 3 = 0, (Q): 2x + 2y – 2z + 99 = 0,

(R): 3x + 3y + 6z + 7 = 0.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Các mặt phẳng (P), (Q), (R) có các vectơ pháp tuyến lần lượt là

\[\overrightarrow {{n_1}} = \left( {1;1; - 1} \right),\overrightarrow {{n_2}} = \left( {2;2; - 2} \right),\overrightarrow {{n_3}} = \left( {3;3;6} \right)\].

Ta có: \[\overrightarrow {{n_2}} = \left( {2;2; - 2} \right) = 2\left( {1;1; - 1} \right) = 2\overrightarrow {{n_1}} \] và 99 ≠ 2.3 nên (P) (Q).

          \[\overrightarrow {{n_1}} .\overrightarrow {{n_3}} = 1.3 + 1.3 + \left( { - 1} \right).6 = 0\] nên (P) (R).

Vậy (P) (Q), (P) (R), (Q) (R).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một kĩ sư xây dựng thiết kế khung một ngôi nhà trong không gian Oxyz như Hình 9 nhờ một phần mềm đồ họa máy tính.

Một kĩ sư xây dựng thiết kế khung một ngôi nhà trong không gian Oxyz như Hình 9 nhờ một phần mềm đồ họa máy tính.  a) Viết phương trình mặt phẳng mái nhà (DEMN).  b) Tính khoảng cách từ điểm B đến mái nhà (DEMN). (ảnh 1)

a) Viết phương trình mặt phẳng mái nhà (DEMN).

b) Tính khoảng cách từ điểm B đến mái nhà (DEMN).

Xem đáp án » 19/09/2024 664

Câu 2:

Lập phương trình mặt phẳng (P) trong mỗi trường hợp sau:

a) (P) đi qua điểm M(1; 2; 3) và có vectơ pháp tuyến \[\overrightarrow n  = \left( {3;1; - 2} \right)\];

b) (P) đi qua điểm N(−2; 3; 0) và có cặp vectơ chỉ phương \[\overrightarrow u  = \left( {1;1;1} \right)\], \[\overrightarrow v  = \left( {3;0;4} \right)\].

c) (P) đi qua ba điểm A(1; 2; 2), B(5; 3; 2), C(2; 4; 2);

d) (P) cắt ba trục tọa độ lần lượt tại các điểm M(3; 0; 0), N(0; 1; 0), P(0; 0; 2).

Xem đáp án » 19/09/2024 203

Câu 3:

Cho hình hộp chữ nhật ABCD.A'B'C'D' có DA = 2, DC = 3, DD' = 2. Tính khoảng cách từ đỉnh B' đến mặt phẳng (BA'C').

Xem đáp án » 19/09/2024 188

Câu 4:

Cho hai mặt phẳng (P): 2x + y + 2z + 12 = 0, (Q): 4x + 2y + 4z – 6 = 0.

a) Chứng minh (P) ∥ (Q).

b) Tính khoảng cách giữa hai mặt phẳng (P) và (Q).

Xem đáp án » 19/09/2024 152

Câu 5:

Cho mặt phẳng (Q) nhận \[\overrightarrow a  = \left( {4;0;1} \right)\],  \[\overrightarrow b  = \left( {2;1;1} \right)\] làm cặp vectơ chỉ phương. Tìm một vectơ pháp tuyến của (Q).

Xem đáp án » 19/09/2024 99

Câu 6:

Tính khoảng cách từ điểm A(1; 2; 3) đến các mặt phẳng sau:

a) (P): 3x + 4z + 10 = 0;

b) (Q): 2x – 10 = 0;

c) (R): 2x + 2y + z – 3 = 0.

Xem đáp án » 19/09/2024 69

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store