Câu hỏi:
19/09/2024 72Cho mặt phẳng (Q) nhận \[\overrightarrow a = \left( {4;0;1} \right)\], \[\overrightarrow b = \left( {2;1;1} \right)\] làm cặp vectơ chỉ phương. Tìm một vectơ pháp tuyến của (Q).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Tích có hướng của hai vectơ \[\overrightarrow a ,\overrightarrow b \] là:
\[\left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&1\\1&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&4\\1&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}4&0\\2&1\end{array}} \right|} \right) = \left( { - 1; - 2;4} \right)\].
Do đó, (Q) có một vectơ pháp tuyến là \[\overrightarrow n = \left( { - 1; - 2;4} \right)\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một kĩ sư xây dựng thiết kế khung một ngôi nhà trong không gian Oxyz như Hình 9 nhờ một phần mềm đồ họa máy tính.
a) Viết phương trình mặt phẳng mái nhà (DEMN).
b) Tính khoảng cách từ điểm B đến mái nhà (DEMN).
Câu 2:
Lập phương trình mặt phẳng (P) trong mỗi trường hợp sau:
a) (P) đi qua điểm M(1; 2; 3) và có vectơ pháp tuyến \[\overrightarrow n = \left( {3;1; - 2} \right)\];
b) (P) đi qua điểm N(−2; 3; 0) và có cặp vectơ chỉ phương \[\overrightarrow u = \left( {1;1;1} \right)\], \[\overrightarrow v = \left( {3;0;4} \right)\].
c) (P) đi qua ba điểm A(1; 2; 2), B(5; 3; 2), C(2; 4; 2);
d) (P) cắt ba trục tọa độ lần lượt tại các điểm M(3; 0; 0), N(0; 1; 0), P(0; 0; 2).
Câu 3:
Cho hình hộp chữ nhật ABCD.A'B'C'D' có DA = 2, DC = 3, DD' = 2. Tính khoảng cách từ đỉnh B' đến mặt phẳng (BA'C').
Câu 4:
Cho hai mặt phẳng (P): 2x + y + 2z + 12 = 0, (Q): 4x + 2y + 4z – 6 = 0.
a) Chứng minh (P) ∥ (Q).
b) Tính khoảng cách giữa hai mặt phẳng (P) và (Q).
Câu 5:
Tìm các cặp mặt phẳng song song hoặc vuông góc trong các mặt phẳng sau: (P): x + y – z + 3 = 0, (Q): 2x + 2y – 2z + 99 = 0,
(R): 3x + 3y + 6z + 7 = 0.
Câu 6:
Tính khoảng cách từ điểm A(1; 2; 3) đến các mặt phẳng sau:
a) (P): 3x + 4z + 10 = 0;
b) (Q): 2x – 10 = 0;
c) (R): 2x + 2y + z – 3 = 0.
về câu hỏi!