Một kĩ sư xây dựng thiết kế khung một ngôi nhà trong không gian Oxyz như Hình 9 nhờ một phần mềm đồ họa máy tính.
a) Viết phương trình mặt phẳng mái nhà (DEMN).
b) Tính khoảng cách từ điểm B đến mái nhà (DEMN).
Một kĩ sư xây dựng thiết kế khung một ngôi nhà trong không gian Oxyz như Hình 9 nhờ một phần mềm đồ họa máy tính.

a) Viết phương trình mặt phẳng mái nhà (DEMN).
b) Tính khoảng cách từ điểm B đến mái nhà (DEMN).
Quảng cáo
Trả lời:

a) Ta có: \[\overrightarrow {DE} = \left( {6;0;0} \right),\overrightarrow {DN} = \left( {0;2;2} \right)\].
Ta có: \[\overrightarrow n = \left[ {\overrightarrow {DE} ,\overrightarrow {DN} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&0\\2&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&6\\2&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}6&0\\0&2\end{array}} \right|} \right)\] = (0; −12; 12) = −12(0; 1; −1).
Vậy \[\overrightarrow n = \left( {0;1; - 1} \right)\] là vectơ pháp tuyến của mặt phẳng (DEMN).
Phương trình của mặt phẳng (DEMN) là 1(y – 0) – 1(z – 4) = 0 hay y – z + 4 = 0.
b) Ta có B(6; 4; 0) nên d(B,(DEMN)) = \[\frac{{\left| {4 + 4} \right|}}{{\sqrt {{0^2} + {1^2} + {{\left( { - 1} \right)}^2}} }} = \frac{8}{{\sqrt 2 }} = 4\sqrt 2 \].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Chọn hệ tọa độ Oxyz sao cho gốc tọa độ O trùng với điểm D.
Khi đó, tọa độ các đỉnh của hình chữ nhật ABCD.A'B'C'D' lần lượt là D(0; 0; 0),
A(2; 0; 0), C(0; 3; 0), B(2; 3; 0), D'(0; 0; 2), A'(2; 0; 2), B'(2; 3; 2), C'(0; 3; 2).
Mặt phẳng (BA'C') có cặp vectơ chỉ phương là \[\overrightarrow {BA'} = \left( {0; - 3;2} \right)\], \[\overrightarrow {BC'} = \left( { - 2;0;2} \right)\].
Ta có: \[\overrightarrow n = \left[ {\overrightarrow {BA'} ,\overrightarrow {BC'} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 3}&2\\0&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&0\\2&{ - 2}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - 3}\\{ - 2}&0\end{array}} \right|} \right)\] = (−6; −4; −6) = −2(3; 2; 3).
Do đó, \[\overrightarrow n \] = (3; 2; 3). Phương trình mặt phẳng (BA'C') là:
3(x – 2) + 2(y – 3) + 3z = 0 hay 3x + 2y + 3z – 12 = 0.
Khoảng cách từ đỉnh B' đến mặt phẳng (BA'C') là:
d(B', (BA'C')) = \[\frac{{\left| {3.2 + 2.3 + 3.2 - 12} \right|}}{{\sqrt {{3^2} + {2^2} + {3^2}} }} = \frac{{3\sqrt {22} }}{{11}}\].
Lời giải
a) Xét hai mặt phẳng (P): 2x + y + 2z + 12 = 0, (Q): 4x + 2y + 4z – 6 = 0, ta có:
\[\frac{2}{4} = \frac{1}{2} = \frac{2}{4} \ne \frac{{12}}{{ - 6}}\] nên (P) ∥ (Q).
b) Trên mặt phẳng (Q) lấy M(0; 1; 1) ∈ (Q).
Ta có: P((P), (Q)) = d(M, (P)) = \[\frac{{\left| {2.0 + 1.1 + 2.1 + 12} \right|}}{{\sqrt {{2^2} + {1^2} + {2^2}} }} = \frac{{15}}{3}\]= 5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.