Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Môn học
Chương trình khác
107 lượt thi 17 câu hỏi
155 lượt thi
Thi ngay
79 lượt thi
192 lượt thi
93 lượt thi
216 lượt thi
Câu 1:
Cho hai biến cố A và B có P(A) = 0,4; P(B) = 0,8 và P(A | B) = 0,25.
a) Xác suất của biến cố A giao B là
A. 0,1.
B. 0,2.
C. 0,25.
D. 0,4.
b) Xác suất của B với điều kiện A là:
A. 0,2.
B. 0,25.
C. 0,5.
D. 0,75.
Câu 2:
c) Xác suất của biến cố A với điều kiện A ∪ B là:
A. 0,4.
B. 0,5.
C. 0,8.
D. 1.
Câu 3:
Toàn thể nhân viên của một công ty được hỏi ý kiến về một dự thảo chính sách phúc lợi mới. Kết quả được ghi lại ở bảng sau:
Chọn ngẫu nhiên một nhân viên của công ty. Gọi A là biến cố “Nhân viên đó là nam giới” và B là biến cố “Nhân viên đó ủng hộ dự thảo chính sách phúc lợi mới”.
a) Xác suất của biến cố A với điều kiện B là
A. \(\frac{9}{{16}}.\)
B. \(\frac{{15}}{{19}}.\)
C. \(\frac{{21}}{{50}}.\)
D. \(\frac{7}{{16}}.\)
Câu 4:
b) Xác suất của biến cố B với điều kiện A là:
Câu 5:
c) Xác suất xảy ra ít nhất một trong hai biến cố A và B là:
A. 0,45.
B. 0,67.
D. 0,92.
Câu 6:
Bạn Lan có 2 con xúc xắc cân đối, 1 con có màu xanh và 1 còn có màu đỏ. Lan gieo đồng thời 2 con xúc xắc.
a) Xác suất của biến cố con xúc xắc màu xanh xuất hiện mặt 1 chấm, biết rằng tổng số chấm trên hai con xúc xắc bằng 5 là
A. \(\frac{1}{3}.\)
B. \(\frac{1}{5}.\)
C. \(\frac{1}{4}.\)
D. \(\frac{1}{6}.\)
Câu 7:
b) Xác suất của biến cố con xúc xắc màu đỏ xuất hiện mặt 6 chấm, biết rằng có ít nhất một con xúc xắc xuất hiện mặt 6 chấm là
A. \(\frac{{13}}{{36}}.\)
B. \(\frac{1}{6}.\)
C. \(\frac{1}{2}.\)
D. \(\frac{6}{{11}}.\)
Câu 8:
Cho sơ đồ hình cây dưới đây:
a) Xác suất của biến cố B với điều kiện A không xảy ra là 0,6.
b) Xác suất cả hai biến cố A và B đều không xảy ra là 0,3.
c) Xác suất của biến cố B là 0,9.
d) Xác suất của biến cố A với điều kiện B là \(\frac{1}{{19}}.\)
Câu 9:
Ông Khải lần lượt rút ra một cách ngẫu nhiên 2 lá bài từ bộ bài tây 52 lá. Lá bài rút ra không được trả lại. Gọi A là biến cố “Lá bài đầu tiên rút ra là chất cơ” và B là biến cố “Lá bài thứ hai rút ra là lá Q”.
a) Xác suất của biến cố A là 0,25.
b) Xác suất của biến cố A giao B là 0,25.
c) Xác suất của biến cố A với điều kiện B là 0,25.
d) A và B là hai biến cố độc lập.
Câu 10:
Ông Hải rút ngẫu nhiên 1 lá bài từ bộ bài tây 52 lá. Gọi A là biến cố “Lá bài được chọn là lá K” và B là biến cố “Lá bài được chọn là chất cơ”. Tính P(A), P(A | B) và P(A | \(\overline B \)).
Câu 11:
Một xạ thủ lần lượt bắn 2 viên đạn vào một bia. Xác suất trúng bia của viên thứ nhất là 0,7; của viên thứ hai là 0,8 và của cả 2 viên là 0,6. Gọi A là biến cố “Viên đạn thứ nhất trúng bia”, B là biến cố “Viên đạn thứ hai trúng bia”.
a) Tính P(A | B) và P(B | A).
b) Hai biến cố A và B có độc lập không, tại sao?
Câu 12:
Một vận động viên bóng bàn thắng 60% các séc đấu anh ta được ra bóng trước và 45% các séc đấu anh ta không được ra bóng trước. Trong một séc đấu, trọng tài gieo một đồng xu cân đối để xác định ai là người ra bóng trước. Tính xác suất vận động viên đó thắng séc đấu.
Câu 13:
Một doanh nghiệp có 30% số nhân viên trên 40 tuổi. Tỉ lệ nhân viên trên 40 tuổi có bằng đại học là 40%. Tỉ lệ nhân viêt không quá 40 tuổi có bằng đại học là 60%. Chọn ngẫu nhiên 1 nhân viên của doanh nghiệp.
a) Tính xác suất nhận viên được chọn có bằng đại học.
b) Biết nhân viên đó có bằng đại học, tính xác suất để nhân viên đó trên 40 tuổi.
Câu 14:
Hai xe máy X và Y cùng sản suất một sản phẩm. Tỉ lệ sản phẩm đạt chuẩn của máy X và máy Y lần lượt là 95% và 90%. Một hộp chứa 1 sản phẩm do máy X sản xuất và 9 sản phẩm do máy Y sản xuất. Chọn ngẫu nhiên 2 sản phẩm từ hộp.
a) Tính xác suất để cả 2 sản phẩm được chọn đều đạt chuẩn.
b) Biết rằng cả 2 sản phẩm lấy ra đều đạt chuẩn, tính xác suất chúng do máy Y sản xuất.
Câu 15:
Người ta quan sát một nhóm người trưởng thành trong 5 năm. Ở thời điểm bắt đầu quan sát, có 30% số người được quan sát thường xuyên hút thuốc. Sau 5 năm, người ta nhận thấy tỉ lệ tử vong trong số những người thường xuyên hút thuốc cao gấp 3 lần tỉ lệ này trong nhóm những người còn lại. Chọn ngẫu nhiên một người trong nhóm và thấy người này tử vong trong 5 năm quan sát, tính xác suất người đó thường xuyên hút thuốc.
Câu 16:
Hộp thứ nhất chứa 5 viên bi xanh và 1 viên bi đỏ. Hộp thứ hai chứa 4 viên bi đỏ. Chọn ngẫu nhiên 3 viên bi từ hộp thứ nhất và bỏ vào hộp thứ hai, rồi từ hộp thứ hai chọn ra ngẫu nhiên 2 viên bi.
a) Tính xác suất của biến cố 2 viên bi lấy ra ở hợp thứ hai có cùng màu.
b) biết 2 viên bi lấy ra ở hợp thứ hai có cùng màu, tính xác suất 3 viên bi lấy ra từ hộp thứ nhất cũng có cũng màu.
21 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com