Câu hỏi:
19/09/2024 148Một doanh nghiệp có 30% số nhân viên trên 40 tuổi. Tỉ lệ nhân viên trên 40 tuổi có bằng đại học là 40%. Tỉ lệ nhân viêt không quá 40 tuổi có bằng đại học là 60%. Chọn ngẫu nhiên 1 nhân viên của doanh nghiệp.
a) Tính xác suất nhận viên được chọn có bằng đại học.
b) Biết nhân viên đó có bằng đại học, tính xác suất để nhân viên đó trên 40 tuổi.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Gọi A là biến cố “Nhân viên được chọn có bằng đại học” và B là biến cố “Nhân viên được chọn trên 40 tuổi”.
Do doanh nghiệp có 30% số nhân viên trên 40 tuổi nên
P(B) = 0,3 và P(\[\overline B \]) = 1 – 0,3 = 0,7.
Do tỉ lệ nhân viên trên 40 tuổi có bằng đại học là 40% và tỉ lệ nhân viên không quá 40 tuổi có bằng đại học là 60% nên P(A | B) = 0,4 và P(A | \[\overline B \]) = 0,6.
Theo công thức xác suất toàn phần, xác suất nhân viên được chọn có bằng đại học là
P(A) = P(B).P(A | B) + P(\[\overline B \]).P(A | \[\overline B \]) = 0,3.0,4 + 0,7.0,6 = 0,54.
b) Theo công thức Bayes, xác suất để nhân viên được chọn trên 40 tuổi, biết rằng nhân viên đó có bằng đại học là:
P(B | A) = \[\frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,3.0,4}}{{0,54}} = \frac{2}{9}\] ≈ 0,222.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một xạ thủ lần lượt bắn 2 viên đạn vào một bia. Xác suất trúng bia của viên thứ nhất là 0,7; của viên thứ hai là 0,8 và của cả 2 viên là 0,6. Gọi A là biến cố “Viên đạn thứ nhất trúng bia”, B là biến cố “Viên đạn thứ hai trúng bia”.
a) Tính P(A | B) và P(B | A).
b) Hai biến cố A và B có độc lập không, tại sao?
Câu 2:
Cho hai biến cố A và B có P(A) = 0,4; P(B) = 0,8 và P(A | B) = 0,25.
a) Xác suất của biến cố A giao B là
A. 0,1.
B. 0,2.
C. 0,25.
D. 0,4.
Câu 3:
Ông Khải lần lượt rút ra một cách ngẫu nhiên 2 lá bài từ bộ bài tây 52 lá. Lá bài rút ra không được trả lại. Gọi A là biến cố “Lá bài đầu tiên rút ra là chất cơ” và B là biến cố “Lá bài thứ hai rút ra là lá Q”.
a) Xác suất của biến cố A là 0,25.
b) Xác suất của biến cố A giao B là 0,25.
c) Xác suất của biến cố A với điều kiện B là 0,25.
d) A và B là hai biến cố độc lập.
Câu 4:
Cho sơ đồ hình cây dưới đây:
a) Xác suất của biến cố B với điều kiện A không xảy ra là 0,6.
b) Xác suất cả hai biến cố A và B đều không xảy ra là 0,3.
c) Xác suất của biến cố B là 0,9.
d) Xác suất của biến cố A với điều kiện B là \(\frac{1}{{19}}.\)
Câu 5:
Toàn thể nhân viên của một công ty được hỏi ý kiến về một dự thảo chính sách phúc lợi mới. Kết quả được ghi lại ở bảng sau:
Chọn ngẫu nhiên một nhân viên của công ty. Gọi A là biến cố “Nhân viên đó là nam giới” và B là biến cố “Nhân viên đó ủng hộ dự thảo chính sách phúc lợi mới”.
c) Xác suất xảy ra ít nhất một trong hai biến cố A và B là:
A. 0,45.
B. 0,67.
C. 0,8.
D. 0,92.
Câu 6:
Hộp thứ nhất chứa 5 viên bi xanh và 1 viên bi đỏ. Hộp thứ hai chứa 4 viên bi đỏ. Chọn ngẫu nhiên 3 viên bi từ hộp thứ nhất và bỏ vào hộp thứ hai, rồi từ hộp thứ hai chọn ra ngẫu nhiên 2 viên bi.
a) Tính xác suất của biến cố 2 viên bi lấy ra ở hợp thứ hai có cùng màu.
b) biết 2 viên bi lấy ra ở hợp thứ hai có cùng màu, tính xác suất 3 viên bi lấy ra từ hộp thứ nhất cũng có cũng màu.
Câu 7:
Hai xe máy X và Y cùng sản suất một sản phẩm. Tỉ lệ sản phẩm đạt chuẩn của máy X và máy Y lần lượt là 95% và 90%. Một hộp chứa 1 sản phẩm do máy X sản xuất và 9 sản phẩm do máy Y sản xuất. Chọn ngẫu nhiên 2 sản phẩm từ hộp.
a) Tính xác suất để cả 2 sản phẩm được chọn đều đạt chuẩn.
b) Biết rằng cả 2 sản phẩm lấy ra đều đạt chuẩn, tính xác suất chúng do máy Y sản xuất.
về câu hỏi!