Câu hỏi:

19/09/2024 761

Người ta quan sát một nhóm người trưởng thành trong 5 năm. Ở thời điểm bắt đầu quan sát, có 30% số người được quan sát thường xuyên hút thuốc. Sau 5 năm, người ta nhận thấy tỉ lệ tử vong trong số những người thường xuyên hút thuốc cao gấp 3 lần tỉ lệ này trong nhóm những người còn lại. Chọn ngẫu nhiên một người trong nhóm và thấy người này tử vong trong 5 năm quan sát, tính xác suất người đó thường xuyên hút thuốc.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi A là biến cố “Một người tử vong trong 5 năm quan sát” và B là biến cố “Một người thường xuyên hút thuốc”.

Do thời điểm bắt đầu quan sát, có 30% số người được quan sát thường xuyên hút thuốc nên P(B) = 0,3 và P(\[\overline B \]) = 1 – 0,3 = 0,7.

Gọi tỉ lệ tử vong trong số những người không thường xuyên hút thuốc là a (0 ≤ a ≤ 1).

Do ở thời điểm sau 5 năm, người ta nhận thấy tỉ lệ tử vong trong số những người thường xuyên hút thuốc cao gấp 3 lần tỉ lệ này trong nhóm những người còn lại nên

P(A | \[\overline B \]) = a và P(A | B) = 3a.

Theo công thức xác suất toàn phần, tỉ lệ một người tử vong trong 5 năm quan sát là:

P(A) = P(B)P(A | B) + P(\[\overline B \])P(A | \[\overline B \]) = 0,3.3a + 0,7a = 1,6a.

Theo công thức Bayes, xác suất một người thường xuyên hút thuốc, biết rằng người đó tử vong trong 5 năm quan sát là:

P(B | A) = \[\frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,3.3a}}{{1,6a}}\] = 0,5625.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hộp thứ nhất chứa 5 viên bi xanh và 1 viên bi đỏ. Hộp thứ hai chứa 4 viên bi đỏ. Chọn ngẫu nhiên 3 viên bi từ hộp thứ nhất và bỏ vào hộp thứ hai, rồi từ hộp thứ hai chọn ra ngẫu nhiên 2 viên bi.

a) Tính xác suất của biến cố 2 viên bi lấy ra ở hợp thứ hai có cùng màu.

b) biết 2 viên bi lấy ra ở hợp thứ hai có cùng màu, tính xác suất 3 viên bi lấy ra từ hộp thứ nhất cũng có cũng màu.

Xem đáp án » 19/09/2024 5,274

Câu 2:

Cho sơ đồ hình cây dưới đây:

Cho sơ đồ hình cây dưới đây:  a) Xác suất của biến cố B với điều kiện A không xảy ra là 0,6.  b) Xác suất cả hai biến cố A và B đều không xảy ra là 0,3. (ảnh 1)

a) Xác suất của biến cố B với điều kiện A không xảy ra là 0,6.

b) Xác suất cả hai biến cố A và B đều không xảy ra là 0,3.

c) Xác suất của biến cố B là 0,9.

d) Xác suất của biến cố A với điều kiện B là \(\frac{1}{{19}}.\)

Xem đáp án » 19/09/2024 4,904

Câu 3:

Một xạ thủ lần lượt bắn 2 viên đạn vào một bia. Xác suất trúng bia của viên thứ nhất là 0,7; của viên thứ hai là 0,8 và của cả 2 viên là 0,6. Gọi A là biến cố “Viên đạn thứ nhất trúng bia”, B là biến cố “Viên đạn thứ hai trúng bia”.

a) Tính P(A | B) và P(B | A).

b) Hai biến cố A và B có độc lập không, tại sao?

Xem đáp án » 19/09/2024 4,177

Câu 4:

Hai xe máy X và Y cùng sản suất một sản phẩm. Tỉ lệ sản phẩm đạt chuẩn của máy X và máy Y lần lượt là 95% và 90%. Một hộp chứa 1 sản phẩm do máy X sản xuất và 9 sản phẩm do máy Y sản xuất. Chọn ngẫu nhiên 2 sản phẩm từ hộp.

a) Tính xác suất để cả 2 sản phẩm được chọn đều đạt chuẩn.

b) Biết rằng cả 2 sản phẩm lấy ra đều đạt chuẩn, tính xác suất chúng do máy Y sản xuất.

Xem đáp án » 19/09/2024 3,042

Câu 5:

Ông Khải lần lượt rút ra một cách ngẫu nhiên 2 lá bài từ bộ bài tây 52 lá. Lá bài rút ra không được trả lại. Gọi A là biến cố “Lá bài đầu tiên rút ra là chất cơ” và B là biến cố “Lá bài thứ hai rút ra là lá Q”.

a) Xác suất của biến cố A là 0,25.

b) Xác suất của biến cố A giao B là 0,25.

c) Xác suất của biến cố A với điều kiện B là 0,25.

d) A và B là hai biến cố độc lập.

Xem đáp án » 19/09/2024 2,505

Câu 6:

Cho hai biến cố A và B có P(A) = 0,4; P(B) = 0,8 và P(A | B) = 0,25.

a) Xác suất của biến cố A giao B là

A. 0,1.

B. 0,2.

C. 0,25.

D. 0,4.

Xem đáp án » 19/09/2024 1,805

Câu 7:

Ông Hải rút ngẫu nhiên 1 lá bài từ bộ bài tây 52 lá. Gọi A là biến cố “Lá bài được chọn là lá K” và B là biến cố “Lá bài được chọn là chất cơ”. Tính P(A), P(A | B) và P(A | \(\overline B \)).

Xem đáp án » 19/09/2024 1,504
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua