Câu hỏi:
19/09/2024 733
Bạn Lan có 2 con xúc xắc cân đối, 1 con có màu xanh và 1 còn có màu đỏ. Lan gieo đồng thời 2 con xúc xắc.
a) Xác suất của biến cố con xúc xắc màu xanh xuất hiện mặt 1 chấm, biết rằng tổng số chấm trên hai con xúc xắc bằng 5 là
A. \(\frac{1}{3}.\)
B. \(\frac{1}{5}.\)
C. \(\frac{1}{4}.\)
D. \(\frac{1}{6}.\)
Bạn Lan có 2 con xúc xắc cân đối, 1 con có màu xanh và 1 còn có màu đỏ. Lan gieo đồng thời 2 con xúc xắc.
a) Xác suất của biến cố con xúc xắc màu xanh xuất hiện mặt 1 chấm, biết rằng tổng số chấm trên hai con xúc xắc bằng 5 là
A. \(\frac{1}{3}.\)
B. \(\frac{1}{5}.\)
C. \(\frac{1}{4}.\)
D. \(\frac{1}{6}.\)
Quảng cáo
Trả lời:
Đáp án đúng là: C
Gọi A là biến cố “Con xúc xắc màu xanh xuất hiện 1 chấm”. Do đó P(A) = \[\frac{1}{6}\].
Gọi B là biến cố “Tổng số chấm trên hai con xúc xắc bằng 5”. Do đó P(B) = \[\frac{4}{{36}} = \frac{1}{9}\].
Ta có: P(AB) = \[\frac{1}{{36}}\].
Do đó, P(A | B) = \[\frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{1}{{36}}:\frac{1}{9} = \frac{1}{4}.\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có sơ đồ hình cây sau:

Gọi A là biến cố “2 viên bi ở hộp thứ hai lấy ra có cùng màu” và B là biến cố “3 viên bi lấy ra từ hộp thứ nhất có cùng màu”.
Từ biểu đồ hình cây, ta có xác suất của biến cố 2 viên bi lấy ra ở hộp thứ hai có cùng màu là P(A) = \[\frac{1}{2}\left( {\frac{1}{7} + \frac{2}{7}} \right) + \frac{1}{2}\left( {\frac{1}{{21}} + \frac{{10}}{{21}}} \right) = \frac{{10}}{{21}}\]≈ 0,476.
b) xác suất của biến cố 3 viên bi lấy ra từ hộp thứ nhất có cùng màu là P(B) = \[\frac{1}{2}\].
Xác suất của biến cố 2 viên bi lấy ra ở hộp thứ hai có cùng màu, biết rằng 3 viên bi lấy ra ở hộp thứ nhất có cùng màu là P(A | B) = \[\frac{1}{7} + \frac{2}{7} = \frac{3}{7}\].
Theo công thức Bayes, xác suất 3 viên bi lấy ra ở hộp thứ nhất có cùng màu, biết rằng 2 viên bi lấy ra ở hộp thứ hai có cùng màu là:
P(B | A) \[ = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{1}{2}.\frac{3}{7}}}{{\frac{{10}}{{21}}}} = 0,45\].
Lời giải
a) Đ |
b) S |
c) S |
d) Đ |
a) Quan sát sơ đồ hình cây, ta thấy xác suất của biến cố B với điều kiện A không xảy ra là 0,6.
b) Quan sát sơ đồ hình cây, ta thấy xác suất cả hai biến cố A và B đều không xảy ra là 0,4.
c) Ta có: P(B) = P(A).P(B | A) + P(\[\overline A \]).P(B | \[\overline A \]) = 0,1.0,3 + 0,9.0,6 = 0,57.
d) Ta có: P(A | B) = \[\frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,1.0,3}}{{0,57}} = \frac{1}{{19}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.