Câu hỏi:
13/07/2024 24,222
Trong không gian Oxyz, cho mặt phẳng (α) đi qua điểm M(0; 2; 1) và có cặp vectơ chỉ phương là .
a) Tìm tọa độ một vectơ pháp tuyến của mặt phẳng (α).
b) Lập phương trình của mặt phẳng (α).
Trong không gian Oxyz, cho mặt phẳng (α) đi qua điểm M(0; 2; 1) và có cặp vectơ chỉ phương là .
a) Tìm tọa độ một vectơ pháp tuyến của mặt phẳng (α).
b) Lập phương trình của mặt phẳng (α).
Quảng cáo
Trả lời:
a) Có \(\left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {\left| {\begin{array}{*{20}{c}}3&1\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&1\\1&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&3\\2&0\end{array}} \right|} \right) = \left( {3;1; - 6} \right)\).
Mặt phẳng (α) nhận \(\overrightarrow n = \left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {3;1; - 6} \right)\) làm một vectơ pháp tuyến.
b) Mặt phẳng (α) đi qua M(0; 2; 1) và nhận \(\overrightarrow n = \left( {3;1; - 6} \right)\) làm một vectơ pháp tuyến có phương trình là: 3x + (y – 2) – 6(z – 1) = 0 Û 3x + y – 6z + 4 = 0.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Giả sử quả bóng rơi tại vị trí A, B là vị trí bạn nam đứng.
Xét DOAB vuông tại B, có \(OB = \sqrt {O{A^2} - A{B^2}} = \sqrt {25 - 9} = 4\).
Vì A Î (Oxy) nên A(3; 4; 0). Suy ra \(\overrightarrow {OA} = \left( {3;4;0} \right)\)
Mặt phẳng mặt đất Oxy có một vectơ pháp tuyến là \(\overrightarrow k = \left( {0;0;1} \right)\).
Có \(\left[ {\overrightarrow {OA} ,\overrightarrow k } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&0\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&3\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&4\\0&0\end{array}} \right|} \right) = \left( {4; - 3;0} \right)\).
Khi đó mặt phẳng (P) đi qua O(0; 0; 0) và có vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {OA} ,\overrightarrow k } \right] = \left( {4; - 3;0} \right)\) có phương trình là 4x – 3y = 0.
Lời giải
Mặt phẳng (P) có một vectơ pháp tuyến là \(\overrightarrow {{n_P}} = \left( {6;5;1} \right)\).
Vì (P) // (Q) nên mặt phẳng (Q) nhận \(\overrightarrow {{n_P}} = \left( {6;5;1} \right)\) làm một vectơ pháp tuyến.
Mặt phẳng (Q) đi qua điểm M(1; 1; 1) và nhận \(\overrightarrow {{n_P}} = \left( {6;5;1} \right)\) làm một vectơ pháp tuyến có phương trình là 6(x – 1) + 5(y – 1) + (z – 1) = 0 Û 6x + 5y + z – 12 = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.