Trong không gian Oxyz, cho mặt phẳng (α) đi qua ba điểm A(0; 1; 1), B(2; 4; 3), C(5; 3; 1).
a) Tìm tọa độ một cặp vectơ chỉ phương của mặt phẳng (α).
b) Tìm tọa độ một vectơ pháp tuyến của mặt phẳng (α).
c) Lập phương trình của mặt phẳng (α).
Trong không gian Oxyz, cho mặt phẳng (α) đi qua ba điểm A(0; 1; 1), B(2; 4; 3), C(5; 3; 1).
a) Tìm tọa độ một cặp vectơ chỉ phương của mặt phẳng (α).
b) Tìm tọa độ một vectơ pháp tuyến của mặt phẳng (α).
c) Lập phương trình của mặt phẳng (α).
Quảng cáo
Trả lời:
a) \(\overrightarrow {AB} = \left( {2;3;2} \right),\overrightarrow {AC} = \left( {5;2;0} \right)\) là một cặp vectơ chỉ phương của mặt phẳng (α).
b) Có \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}3&2\\2&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&2\\0&5\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&3\\5&2\end{array}} \right|} \right) = \left( { - 4;10; - 11} \right)\).
Mặt phẳng (α) nhận \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 4;10; - 11} \right)\) làm một vectơ pháp tuyến.
c) Mặt phẳng (α) đi qua A(0; 1; 1) và nhận \(\overrightarrow n = \left( { - 4;10; - 11} \right)\) làm vectơ pháp tuyến có phương trình là: −4x + 10(y – 1) – 11(z – 1) = 0 Û −4x + 10y – 11z + 1 = 0.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử quả bóng rơi tại vị trí A, B là vị trí bạn nam đứng.
Xét DOAB vuông tại B, có \(OB = \sqrt {O{A^2} - A{B^2}} = \sqrt {25 - 9} = 4\).
Vì A Î (Oxy) nên A(3; 4; 0). Suy ra \(\overrightarrow {OA} = \left( {3;4;0} \right)\)
Mặt phẳng mặt đất Oxy có một vectơ pháp tuyến là \(\overrightarrow k = \left( {0;0;1} \right)\).
Có \(\left[ {\overrightarrow {OA} ,\overrightarrow k } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&0\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&3\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&4\\0&0\end{array}} \right|} \right) = \left( {4; - 3;0} \right)\).
Khi đó mặt phẳng (P) đi qua O(0; 0; 0) và có vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {OA} ,\overrightarrow k } \right] = \left( {4; - 3;0} \right)\) có phương trình là 4x – 3y = 0.
Lời giải
Vì ABCD là hình vuông cạnh \(a\sqrt 2 \) và O là tâm của hình vuông nên ta có:
\(OA = OB = OC = OD = a\).
Khi đó ta có O(0; 0; 0), A(−a; 0; 0), B(0; a; 0), S(0; 0; 2a), C(a; 0; 0).
Mặt phẳng (SAB) đi qua A(−a; 0; 0), B(0; a; 0), S(0; 0; 2a) có phương trình theo đoạn chắn là:
\(\frac{x}{{ - a}} + \frac{y}{a} + \frac{z}{{2a}} = 1\) hay −2x + 2y + z = 2a hay −2x + 2y + z – 2a = 0.
Ta có \(d\left( {C,\left( {SAB} \right)} \right) = \frac{{\left| { - 2a - 2a} \right|}}{{\sqrt {{{\left( { - 2} \right)}^2} + {2^2} + {1^2}} }} = \frac{{4a}}{3}\).
Vậy \(d\left( {C,\left( {SAB} \right)} \right) = \frac{4}{3}a\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



