Câu hỏi:

13/07/2024 4,061

Viết phương trình mặt phẳng (P) trong mỗi trường hợp sau:

a) (P) đi qua điểm A(2; 0; −1) và có vectơ pháp tuyến \(\overrightarrow n = \left( {5; - 2;7} \right)\).

b) (P) đi qua điểm B(−2; 3; 0) và có cặp vectơ chỉ phương là \(\overrightarrow u = \left( {2;2; - 1} \right)\), \(\overrightarrow v = \left( {3;1;0} \right)\).

c) (P) đi qua ba điểm A(2; 1; 5), B(3; 2; 7), C(4; 1; 6).

d) (P) đi qua ba điểm M(7; 0; 0), N(0; −2; 0), P(0; 0; 9).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) (P) đi qua điểm A(2; 0; −1) và có vectơ pháp tuyến \(\overrightarrow n = \left( {5; - 2;7} \right)\) có phương trình là: 5(x – 2) – 2y + 7(z + 1) = 0 hay 5x – 2y + 7z – 3 = 0.

b) Có \(\left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&{ - 1}\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&2\\0&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&2\\3&1\end{array}} \right|} \right) = \left( {1; - 3; - 4} \right)\).

(P) đi qua điểm B(−2; 3; 0) và nhận \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( {1; - 3; - 4} \right)\) làm vectơ pháp tuyến có phương trình là: (x + 2) – 3(y – 3) – 4z = 0 Û x – 3y – 4z + 11 = 0.

c) Ta có \(\overrightarrow {AB} = \left( {1;1;2} \right),\overrightarrow {AC} = \left( {2;0;1} \right)\).

\(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&2\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&1\\1&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&1\\2&0\end{array}} \right|} \right) = \left( {1;3; - 2} \right)\).

Mặt phẳng (P) đi qua ba điểm A(2; 1; 5) và nhận \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {1;3; - 2} \right)\) làm vectơ pháp tuyến có phương trình là (x – 2) + 3(y – 1) – 2(z – 5) = 0 Û x + 3y – 2z + 5 = 0.

d) Phương trình mặt phẳng (P) đi qua ba điểm M(7; 0; 0), N(0; −2; 0), P(0; 0; 9) có phương trình theo đoạn chắn là: \(\frac{x}{7} + \frac{y}{{ - 2}} + \frac{z}{9} = 1\) Û 18x + 63y – 14z + 126 = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hai học sinh đang chuyền bóng. Bạn nữ ném bóng cho bạn nam. Quả bóng bay trên không, lệch sang phải và rơi xuống tại vị trí cách bạn nam 3 m, cách bạn nữ 5 m (Hình 16). Cho biết quỹ đạo của quả bóng nằm trong (ảnh 2)

Giả sử quả bóng rơi tại vị trí A, B là vị trí bạn nam đứng.

Xét DOAB vuông tại B, có \(OB = \sqrt {O{A^2} - A{B^2}} = \sqrt {25 - 9} = 4\).

Vì A Î (Oxy) nên A(3; 4; 0). Suy ra \(\overrightarrow {OA} = \left( {3;4;0} \right)\)

Mặt phẳng mặt đất Oxy có một vectơ pháp tuyến là \(\overrightarrow k = \left( {0;0;1} \right)\).

\(\left[ {\overrightarrow {OA} ,\overrightarrow k } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&0\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&3\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&4\\0&0\end{array}} \right|} \right) = \left( {4; - 3;0} \right)\).

Khi đó mặt phẳng (P) đi qua O(0; 0; 0) và có vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {OA} ,\overrightarrow k } \right] = \left( {4; - 3;0} \right)\) có phương trình là 4x – 3y = 0.

Lời giải

a) Có \(\left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {\left| {\begin{array}{*{20}{c}}3&1\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&1\\1&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&3\\2&0\end{array}} \right|} \right) = \left( {3;1; - 6} \right)\).

Mặt phẳng (α) nhận \(\overrightarrow n = \left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {3;1; - 6} \right)\) làm một vectơ pháp tuyến.

b) Mặt phẳng (α) đi qua M(0; 2; 1) và nhận \(\overrightarrow n = \left( {3;1; - 6} \right)\) làm một vectơ pháp tuyến có phương trình là: 3x + (y – 2) – 6(z – 1) = 0 Û 3x + y – 6z + 4 = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP