Câu hỏi:

13/07/2024 1,402

a) Cho vectơ n khác 0. Qua một điểm M0 cố định trong không gian, có bao nhiêu mặt phẳng (α) vuông góc với giá của vectơ n?

b) Cho hai vectơ \(\overrightarrow a ,\overrightarrow b \) không cùng phương. Qua một điểm M0 cố định trong không gian, có bao nhiêu mặt phẳng (α) song song hoặc chứa giá của hai vectơ \(\overrightarrow a ,\overrightarrow b \)?

a) Cho vectơ n khác 0. Qua một điểm M0 cố định trong không gian, có bao nhiêu mặt phẳng (α) vuông góc với giá của vectơ n? (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Qua một điểm M0 cố định trong không gian, có một mặt phẳng (α) vuông góc với giá của vectơ \(\overrightarrow n \).

b) Qua một điểm M0 cố định trong không gian, có một mặt phẳng (α) song song hoặc chứa giá của hai vectơ \(\overrightarrow a ,\overrightarrow b \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hai học sinh đang chuyền bóng. Bạn nữ ném bóng cho bạn nam. Quả bóng bay trên không, lệch sang phải và rơi xuống tại vị trí cách bạn nam 3 m, cách bạn nữ 5 m (Hình 16). Cho biết quỹ đạo của quả bóng nằm trong (ảnh 2)

Giả sử quả bóng rơi tại vị trí A, B là vị trí bạn nam đứng.

Xét DOAB vuông tại B, có \(OB = \sqrt {O{A^2} - A{B^2}} = \sqrt {25 - 9} = 4\).

Vì A Î (Oxy) nên A(3; 4; 0). Suy ra \(\overrightarrow {OA} = \left( {3;4;0} \right)\)

Mặt phẳng mặt đất Oxy có một vectơ pháp tuyến là \(\overrightarrow k = \left( {0;0;1} \right)\).

\(\left[ {\overrightarrow {OA} ,\overrightarrow k } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&0\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&3\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&4\\0&0\end{array}} \right|} \right) = \left( {4; - 3;0} \right)\).

Khi đó mặt phẳng (P) đi qua O(0; 0; 0) và có vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {OA} ,\overrightarrow k } \right] = \left( {4; - 3;0} \right)\) có phương trình là 4x – 3y = 0.

Lời giải

a) Có \(\left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {\left| {\begin{array}{*{20}{c}}3&1\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&1\\1&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&3\\2&0\end{array}} \right|} \right) = \left( {3;1; - 6} \right)\).

Mặt phẳng (α) nhận \(\overrightarrow n = \left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {3;1; - 6} \right)\) làm một vectơ pháp tuyến.

b) Mặt phẳng (α) đi qua M(0; 2; 1) và nhận \(\overrightarrow n = \left( {3;1; - 6} \right)\) làm một vectơ pháp tuyến có phương trình là: 3x + (y – 2) – 6(z – 1) = 0 Û 3x + y – 6z + 4 = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP