Câu hỏi:

13/07/2024 5,991

Cho tứ diện ABCD có các đỉnh A(4; 0; 2), B(0; 5; 1), C(4; −1; 3), D(3; −1; 5).

a) Hãy viết phương trình của các mặt phẳng (ABC) và (ABD).

b) Hãy viết phương trình mặt phẳng (P) đi qua cạnh BC và song song với cạnh AD.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \[\overrightarrow {AB} = \left( { - 4;5; - 1} \right),\overrightarrow {AC} = \left( {0; - 1;1} \right),\overrightarrow {AD} = \left( { - 1; - 1;3} \right)\], \(\overrightarrow {BC} = \left( {4; - 6;2} \right)\).

a) Mặt phẳng (ABC) có \[\overrightarrow {AB} = \left( { - 4;5; - 1} \right),\overrightarrow {AC} = \left( {0; - 1;1} \right)\] là cặp vectơ chỉ phương.

Do đó mặt phẳng (ABC) nhận

\(\overrightarrow n = \frac{1}{4}\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \frac{1}{4}\left( {5.1 - 1.1; - 1.0 + 1.4;\left( { - 4} \right).\left( { - 1} \right) - 0.5} \right) = \left( {1;1;1} \right)\).

Mặt phẳng (ABC) đi qua điểm A(4; 0; 2) và \(\overrightarrow n = \left( {1;1;1} \right)\) làm một vectơ pháp tuyến có phương trình là (x – 4) + y + (z – 2) = 0 Û x + y + z – 6 = 0.

Mặt phẳng (ABD) nhận \[\overrightarrow {AB} = \left( { - 4;5; - 1} \right)\], \[\overrightarrow {AD} = \left( { - 1; - 1;3} \right)\] làm cặp vectơ chỉ phương.

Do đó mặt phẳng (ABD) nhận

\(\overrightarrow {n'} = \left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right] = \left( {5.3 - 1.1;\left( { - 1} \right).\left( { - 1} \right) + 3.4;\left( { - 4} \right).\left( { - 1} \right) + 1.5} \right) = \left( {14;13;9} \right)\).

Mặt phẳng (ABD) đi qua điểm A(4; 0; 2) và \(\overrightarrow {n'} = \left( {14;13;9} \right)\) làm một vectơ pháp tuyến có phương trình là 14(x – 4) + 13y + 9(z – 2) = 0 Û 14x + 13y + 9z – 74 = 0.

b) Mặt phẳng (P) đi qua cạnh BC và song song với cạnh AD nhận \(\overrightarrow {BC} = \left( {4; - 6;2} \right)\), \[\overrightarrow {AD} = \left( { - 1; - 1;3} \right)\] làm cặp vectơ chỉ phương.

Do đó mặt phẳng (P) nhận

\[\overrightarrow {{n_P}} = \frac{{ - 1}}{2}\left[ {\overrightarrow {BC} ,\overrightarrow {AD} } \right] = \frac{{ - 1}}{2}\left( { - 6.3 + 1.2;2.\left( { - 1} \right) - 3.4;4.\left( { - 1} \right) - 1.6} \right) = \left( {8;7;5} \right)\].

Mặt phẳng (P) đi qua điểm B(0; 5; 1) và nhận \[\overrightarrow {{n_P}} = \left( {8;7;5} \right)\] làm một vectơ pháp tuyến có phương trình là 8x + 7(y – 5) + 5(z – 1) = 0 Û 8x + 7y + 5z – 40 = 0.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hai học sinh đang chuyền bóng. Bạn nữ ném bóng cho bạn nam. Quả bóng bay trên không, lệch sang phải và rơi xuống tại vị trí cách bạn nam 3 m, cách bạn nữ 5 m (Hình 16). Cho biết quỹ đạo của quả bóng nằm trong mặt phẳng (P) vuông góc với mặt đất. Hãy viết phương trình của (P) trong không gian Oxyz được mô tả như trong hình vẽ.

Hai học sinh đang chuyền bóng. Bạn nữ ném bóng cho bạn nam. Quả bóng bay trên không, lệch sang phải và rơi xuống tại vị trí cách bạn nam 3 m, cách bạn nữ 5 m (Hình 16). Cho biết quỹ đạo của quả bóng nằm trong (ảnh 1)

Xem đáp án » 13/07/2024 43,759

Câu 2:

Trong không gian Oxyz, cho mặt phẳng (α) đi qua điểm M(0; 2; 1) và có cặp vectơ chỉ phương là a=1;3;1,b=2;0;1.

a) Tìm tọa độ một vectơ pháp tuyến của mặt phẳng (α).

b) Lập phương trình của mặt phẳng (α).

Xem đáp án » 13/07/2024 20,303

Câu 3:

Trên bản thiết kế đồ họa 3D của một cách đồng điện mặt trời trong không gian Oxyz, một tấm pin nằm trên mặt phẳng (P): 6x + 5y + z + 2 = 0; một tấm pin khác nằm trên mặt phẳng (Q) đi qua điểm M(1; 1; 1) và song song với (P). Viết phương trình mặt phẳng (Q).

Trên bản thiết kế đồ họa 3D của một cách đồng điện mặt trời trong không gian Oxyz, một tấm pin nằm trên mặt phẳng (P): 6x + 5y + z + 2 = 0; một tấm pin khác nằm trên mặt phẳng (Q) đi qua điểm M(1; 1; 1) và song song với (P). Viết phương trình mặt phẳng (Q).   (ảnh 1)

Xem đáp án » 13/07/2024 13,678

Câu 4:

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a2, chiều cao bằng 2a và O là tâm của đáy. Bằng cách thiết lập hệ trục tọa độ Oxyz như Hình 18, tính khoảng cách từ điểm C đến mặt phẳng (SAB).

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a căn 2 , chiều cao bằng 2a và O là tâm của đáy. Bằng cách thiết lập hệ trục tọa độ Oxyz như Hình 18, tính khoảng cách từ điểm C đến mặt phẳng (SAB).   (ảnh 1)

Xem đáp án » 13/07/2024 12,661

Câu 5:

Trong không gian Oxyz, cho ba điểm A(3; 0; 0), B(0; 4; 0), C(0; 0; 5).

a) Tìm tọa độ của một cặp vectơ chỉ phương của mặt phẳng (ABC).

b) Tìm tọa độ của một vectơ pháp tuyến của mặt phẳng (OAB).

Xem đáp án » 13/07/2024 11,090

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a, AD = 5a, SA = 3a và SA ^ (ABCD). Bằng cách thiết lập hệ trục tọa độ Oxyz như Hình 19, tính khoảng cách từ điểm A đến mặt phẳng (SBC).

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a, AD = 5a, SA = 3a và SA  (ABCD). Bằng cách thiết lập hệ trục tọa độ Oxyz như Hình 19, tính khoảng cách từ điểm A đến mặt phẳng (SBC).   (ảnh 1)

Xem đáp án » 13/07/2024 9,986

Câu 7:

a) Lập phương trình của các mặt phẳng tọa độ (Oxy), (Oyz), (Oxz).

b) Lập phương trình của các mặt phẳng đi qua điểm A(−1; 9; 8) và lần lượt song song với các mặt phẳng tọa độ trên.

Xem đáp án » 13/07/2024 6,649