Câu hỏi:
13/07/2024 6,163Cho tứ diện ABCD có các đỉnh A(4; 0; 2), B(0; 5; 1), C(4; −1; 3), D(3; −1; 5).
a) Hãy viết phương trình của các mặt phẳng (ABC) và (ABD).
b) Hãy viết phương trình mặt phẳng (P) đi qua cạnh BC và song song với cạnh AD.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Ta có \[\overrightarrow {AB} = \left( { - 4;5; - 1} \right),\overrightarrow {AC} = \left( {0; - 1;1} \right),\overrightarrow {AD} = \left( { - 1; - 1;3} \right)\], \(\overrightarrow {BC} = \left( {4; - 6;2} \right)\).
a) Mặt phẳng (ABC) có \[\overrightarrow {AB} = \left( { - 4;5; - 1} \right),\overrightarrow {AC} = \left( {0; - 1;1} \right)\] là cặp vectơ chỉ phương.
Do đó mặt phẳng (ABC) nhận
\(\overrightarrow n = \frac{1}{4}\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \frac{1}{4}\left( {5.1 - 1.1; - 1.0 + 1.4;\left( { - 4} \right).\left( { - 1} \right) - 0.5} \right) = \left( {1;1;1} \right)\).
Mặt phẳng (ABC) đi qua điểm A(4; 0; 2) và \(\overrightarrow n = \left( {1;1;1} \right)\) làm một vectơ pháp tuyến có phương trình là (x – 4) + y + (z – 2) = 0 Û x + y + z – 6 = 0.
Mặt phẳng (ABD) nhận \[\overrightarrow {AB} = \left( { - 4;5; - 1} \right)\], \[\overrightarrow {AD} = \left( { - 1; - 1;3} \right)\] làm cặp vectơ chỉ phương.
Do đó mặt phẳng (ABD) nhận
\(\overrightarrow {n'} = \left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right] = \left( {5.3 - 1.1;\left( { - 1} \right).\left( { - 1} \right) + 3.4;\left( { - 4} \right).\left( { - 1} \right) + 1.5} \right) = \left( {14;13;9} \right)\).
Mặt phẳng (ABD) đi qua điểm A(4; 0; 2) và \(\overrightarrow {n'} = \left( {14;13;9} \right)\) làm một vectơ pháp tuyến có phương trình là 14(x – 4) + 13y + 9(z – 2) = 0 Û 14x + 13y + 9z – 74 = 0.
b) Mặt phẳng (P) đi qua cạnh BC và song song với cạnh AD nhận \(\overrightarrow {BC} = \left( {4; - 6;2} \right)\), \[\overrightarrow {AD} = \left( { - 1; - 1;3} \right)\] làm cặp vectơ chỉ phương.
Do đó mặt phẳng (P) nhận
\[\overrightarrow {{n_P}} = \frac{{ - 1}}{2}\left[ {\overrightarrow {BC} ,\overrightarrow {AD} } \right] = \frac{{ - 1}}{2}\left( { - 6.3 + 1.2;2.\left( { - 1} \right) - 3.4;4.\left( { - 1} \right) - 1.6} \right) = \left( {8;7;5} \right)\].
Mặt phẳng (P) đi qua điểm B(0; 5; 1) và nhận \[\overrightarrow {{n_P}} = \left( {8;7;5} \right)\] làm một vectơ pháp tuyến có phương trình là 8x + 7(y – 5) + 5(z – 1) = 0 Û 8x + 7y + 5z – 40 = 0.
Đã bán 187
Đã bán 1,3k
Đã bán 1,5k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hai học sinh đang chuyền bóng. Bạn nữ ném bóng cho bạn nam. Quả bóng bay trên không, lệch sang phải và rơi xuống tại vị trí cách bạn nam 3 m, cách bạn nữ 5 m (Hình 16). Cho biết quỹ đạo của quả bóng nằm trong mặt phẳng (P) vuông góc với mặt đất. Hãy viết phương trình của (P) trong không gian Oxyz được mô tả như trong hình vẽ.
Câu 2:
Trong không gian Oxyz, cho mặt phẳng (α) đi qua điểm M(0; 2; 1) và có cặp vectơ chỉ phương là .
a) Tìm tọa độ một vectơ pháp tuyến của mặt phẳng (α).
b) Lập phương trình của mặt phẳng (α).
Câu 3:
Trên bản thiết kế đồ họa 3D của một cách đồng điện mặt trời trong không gian Oxyz, một tấm pin nằm trên mặt phẳng (P): 6x + 5y + z + 2 = 0; một tấm pin khác nằm trên mặt phẳng (Q) đi qua điểm M(1; 1; 1) và song song với (P). Viết phương trình mặt phẳng (Q).
Câu 4:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng , chiều cao bằng 2a và O là tâm của đáy. Bằng cách thiết lập hệ trục tọa độ Oxyz như Hình 18, tính khoảng cách từ điểm C đến mặt phẳng (SAB).
Câu 5:
Trong không gian Oxyz, cho ba điểm A(3; 0; 0), B(0; 4; 0), C(0; 0; 5).
a) Tìm tọa độ của một cặp vectơ chỉ phương của mặt phẳng (ABC).
b) Tìm tọa độ của một vectơ pháp tuyến của mặt phẳng (OAB).
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a, AD = 5a, SA = 3a và SA ^ (ABCD). Bằng cách thiết lập hệ trục tọa độ Oxyz như Hình 19, tính khoảng cách từ điểm A đến mặt phẳng (SBC).
Câu 7:
a) Lập phương trình của các mặt phẳng tọa độ (Oxy), (Oyz), (Oxz).
b) Lập phương trình của các mặt phẳng đi qua điểm A(−1; 9; 8) và lần lượt song song với các mặt phẳng tọa độ trên.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận