Câu hỏi:

13/07/2024 4,163

Sử dụng tích phân, tính thể tích khối nón có bán kính đáy r và chiều cao h (Hình 16).

Sử dụng tích phân, tính thể tích khối nón có bán kính đáy r và chiều cao h (Hình 16).   (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Sử dụng tích phân, tính thể tích khối nón có bán kính đáy r và chiều cao h (Hình 16).   (ảnh 2)

Chọn hệ trục tọa độ như hình vẽ. Ta có O(0; 0), B(h; r).

Ta có OB là đường thẳng đi qua gốc tọa độ nên OB: y = ax.

Mà OB đi qua điểm B nên r = ah \( \Rightarrow a = \frac{r}{h}\).

Do đó OB: \(y = \frac{r}{h}x\).

Khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y = \frac{r}{h}x\), trục hoành, trục tung và đường thẳng x = h quanh trục Ox ta được khối nón có chiều cao h và bán kính r.

Do đó thể tích của khối nón là:

\(V = \pi \int\limits_0^h {{{\left( {\frac{r}{h}x} \right)}^2}dx} = \left. {\frac{{\pi {r^2}}}{{{h^2}}}.\frac{{{x^3}}}{3}} \right|_0^h = \frac{1}{3}\pi {r^2}h\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì mặt cắt là tam giác vuông có một góc 45° nên mặt cắt là tam giác vuông cân.

Do đó diện tích của mặt cắt là \(S\left( x \right) = \frac{1}{2}{\left( {\sqrt {4 - {x^2}} } \right)^2} = \frac{1}{2}\left( {4 - {x^2}} \right) = 2 - \frac{1}{2}{x^2}\).

Thể tích vật thể là:

\(V = \int\limits_{ - 2}^2 {\left( {2 - \frac{1}{2}{x^2}} \right)dx} \)\( = \left. {\left( {2x - \frac{{{x^3}}}{6}} \right)} \right|_{ - 2}^2\)\( = \frac{8}{3} + \frac{8}{3} = \frac{{16}}{3}\).

Lời giải

Mặt cắt của một cửa hầm có dạng là hình phẳng giới hạn bởi một parabol và đường thẳng nằm ngang như Hình 7. Tính diện tích của cửa hầm.   (ảnh 2)

Chon hệ tọa độ Oxy như hình vẽ.

Giả sử (P): y = ax2 + bx + c (a ≠ 0).

Vì (P) đi qua các điểm (0; 0), (6; 0), (3; 6) nên ta có:

\(\left\{ \begin{array}{l}c = 0\\36a + 6b = 0\\9a + 3b = 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{2}{3}\\b = 4\\c = 0\end{array} \right.\).

Vậy (P): \(y = - \frac{2}{3}{x^2} + 4x\).

Bài toán trở thành tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = - \frac{2}{3}{x^2} + 4x\), trục hoành và hai đường thẳng x = 0, x = 6.

Diện tích cần tính là:

\(S = \int\limits_0^6 {\left| { - \frac{2}{3}{x^2} + 4x} \right|} dx\)\( = \int\limits_0^6 {\left( { - \frac{2}{3}{x^2} + 4x} \right)} dx\)\( = \left. {\left( { - \frac{{2{x^3}}}{9} + 2{x^2}} \right)} \right|_0^6 = 24\) m2.

Vậy diện tích của cửa hầm là 24 m2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP