Câu hỏi:

13/07/2024 120

Trong không gian, cho hình chóp O.ABCD có đáy là hình vuông cạnh a, OA ^ (ABCD), OA = h. Đặt trục số Ox như Hình 8. Một mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (0 < x ≤ h), cắt hình chóp O.ABCD theo mặt cắt là hình vuông A'B'C'D'. Kí hiệu S(x) là diện tích của hình vuông A'B'C'D'.

a) Tính S(x) theo a, h và x.

b) Tính 0hSxdx và so sánh với thể tích của khối chóp O.ABCD.

Trong không gian, cho hình chóp O.ABCD có đáy là hình vuông cạnh a, OA  (ABCD), OA = h. Đặt trục số Ox như Hình 8 (ảnh 1)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có A'B'C'D' đồng dạng với ABCD theo tỉ số đồng dạng là \(\frac{x}{h}\).

Do đó \(\frac{{S\left( x \right)}}{{{S_{ABCD}}}} = {\left( {\frac{x}{h}} \right)^2} \Rightarrow S\left( x \right) = {\left( {\frac{x}{h}} \right)^2}.{a^2}\).

b) \(\int\limits_0^h {S\left( x \right)dx} \)\( = \int\limits_0^h {{{\left( {\frac{x}{h}} \right)}^2}.{a^2}dx} \)\( = \frac{{{a^2}}}{{{h^2}}}\int\limits_0^h {{x^2}dx} \)\( = \left. {\left( {\frac{{{a^2}}}{{{h^2}}}.\frac{{{x^3}}}{3}} \right)} \right|_0^h\)\( = \frac{1}{3}{a^2}h\).

\({V_{O.ABCD}} = \frac{1}{3}.OA.{S_{ABCD}} = \frac{1}{3}.h.{a^2}\).

Vậy \({V_{O.ABCD}} = \int\limits_0^h {S\left( x \right)dx} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Khi cắt một vật thể hình chiếc nêm bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (−2 ≤ x ≤ 2), mặt cắt là tam giác vuông có một góc 45° và độ dài một cạnh góc vuông là 4x2 (dm) (Hình 17). Tính thể tích của vật thể.

Khi cắt một vật thể hình chiếc nêm bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (−2 ≤ x ≤ 2), (ảnh 1)

Xem đáp án » 13/07/2024 1,832

Câu 2:

Trong mặt phẳng tọa độ Oxy, cho hình thang OABC có A(0; 1), B(2; 2) và C(2; 0) (Hình 19). Tính thể tích khối tròn xoay tạo thành khi quay hình thang OABC quanh trục Ox.

Trong mặt phẳng tọa độ Oxy, cho hình thang OABC có A(0; 1), B(2; 2) và (ảnh 1)

Xem đáp án » 13/07/2024 1,101

Câu 3:

Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số y = cosx – 2, trục hoành và hai đường thẳng x = 0, x = π.

Xem đáp án » 13/07/2024 829

Câu 4:

Tính diện tích hình phẳng giới hạn bởi

a) Đồ thị của hàm số y = ex, trục hoành và hai đường thẳng x = −1, x = 1.

b) Đồ thị của hàm số \(y = x + \frac{1}{x}\), trục hoành và hai đường thẳng x = 1, x = 2.

Xem đáp án » 13/07/2024 756

Câu 5:

Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y=x2+1x, y = – x và hai đường thẳng x = 1, x = 4.

Xem đáp án » 13/07/2024 754

Câu 6:

Mặt cắt của một cửa hầm có dạng là hình phẳng giới hạn bởi một parabol và đường thẳng nằm ngang như Hình 7. Tính diện tích của cửa hầm.

Mặt cắt của một cửa hầm có dạng là hình phẳng giới hạn bởi một parabol và đường thẳng nằm ngang như Hình 7. Tính diện tích của cửa hầm.   (ảnh 1)

Xem đáp án » 13/07/2024 715

Câu 7:

Một bình chứa nước có hình dạng như Hình 11. Biết rằng khi nước trong bình có chiều cao x (dm) (0 ≤ x ≤ 4) thì mặt nước là hình vuông có cạnh 2+x24 (dm). Tính dung tích của bình.

Một bình chứa nước có hình dạng như Hình 11. Biết rằng khi nước trong bình có chiều cao x (dm) (ảnh 1)

Xem đáp án » 13/07/2024 694

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL