Câu hỏi:

13/07/2024 2,751

Ta đã biết công thức tính thể tích của khối cầu bán kính R là V=4πR33. Làm thế nào để tìm ra công thức đó?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Sau khi học xong bài, ta giải quyết bài toán này như sau:

Ta đã biết công thức tính thể tích của khối cầu bán kính R là V = 4pi R^3/ 3 . Làm thế nào để tìm ra công thức đó? (ảnh 1)

Khối cầu có bán kính R là khối tròn xoay nhận được khi quay nửa hình tròn giới hạn bởi đồ thị hàm số \(y = \sqrt {{R^2} - {x^2}} \left( { - R \le x \le R} \right)\) và trục Ox quanh trục Ox.

Từ đó thể tích khối cầu là:

\(V = \pi \int\limits_{ - R}^R {\left( {{R^2} - {x^2}} \right)dx} = \left. {\pi \left( {{R^2}x - \frac{{{x^3}}}{3}} \right)} \right|_{ - R}^R = \frac{{4\pi {R^3}}}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì mặt cắt là tam giác vuông có một góc 45° nên mặt cắt là tam giác vuông cân.

Do đó diện tích của mặt cắt là \(S\left( x \right) = \frac{1}{2}{\left( {\sqrt {4 - {x^2}} } \right)^2} = \frac{1}{2}\left( {4 - {x^2}} \right) = 2 - \frac{1}{2}{x^2}\).

Thể tích vật thể là:

\(V = \int\limits_{ - 2}^2 {\left( {2 - \frac{1}{2}{x^2}} \right)dx} \)\( = \left. {\left( {2x - \frac{{{x^3}}}{6}} \right)} \right|_{ - 2}^2\)\( = \frac{8}{3} + \frac{8}{3} = \frac{{16}}{3}\).

Lời giải

Mặt cắt của một cửa hầm có dạng là hình phẳng giới hạn bởi một parabol và đường thẳng nằm ngang như Hình 7. Tính diện tích của cửa hầm.   (ảnh 2)

Chon hệ tọa độ Oxy như hình vẽ.

Giả sử (P): y = ax2 + bx + c (a ≠ 0).

Vì (P) đi qua các điểm (0; 0), (6; 0), (3; 6) nên ta có:

\(\left\{ \begin{array}{l}c = 0\\36a + 6b = 0\\9a + 3b = 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{2}{3}\\b = 4\\c = 0\end{array} \right.\).

Vậy (P): \(y = - \frac{2}{3}{x^2} + 4x\).

Bài toán trở thành tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = - \frac{2}{3}{x^2} + 4x\), trục hoành và hai đường thẳng x = 0, x = 6.

Diện tích cần tính là:

\(S = \int\limits_0^6 {\left| { - \frac{2}{3}{x^2} + 4x} \right|} dx\)\( = \int\limits_0^6 {\left( { - \frac{2}{3}{x^2} + 4x} \right)} dx\)\( = \left. {\left( { - \frac{{2{x^3}}}{9} + 2{x^2}} \right)} \right|_0^6 = 24\) m2.

Vậy diện tích của cửa hầm là 24 m2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP