Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) \(\int\limits_{ - 1}^1 {4{x^7}dx} \)\( = 4\int\limits_{ - 1}^1 {{x^7}dx} \)\( = \left. {\frac{{{x^8}}}{2}} \right|_{ - 1}^1\)\( = \left. {\frac{{{x^8}}}{2}} \right|_{ - 1}^1 = \frac{1}{2} - \frac{1}{2} = 0\).
b) \(\int\limits_{ - 2}^{ - 1} {\frac{{ - 3}}{{10x}}dx} \)\( = - \frac{3}{{10}}\int\limits_{ - 2}^{ - 1} {\frac{1}{x}dx} \)\( = \left. { - \frac{3}{{10}}\ln \left| x \right|} \right|_{ - 2}^{ - 1}\)\( = \frac{3}{{10}}\ln 2\).
c) \(\int\limits_0^2 {\frac{{{5^{x - 1}}}}{2}} dx\)\( = \frac{1}{{10}}\int\limits_0^2 {{5^x}} dx\)\( = \left. {\frac{1}{{10}}.\frac{{{5^x}}}{{\ln 5}}} \right|_0^2\)\( = \frac{{24}}{{10\ln 5}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tại một nhà máy sản xuất một loại phân bón, gọi P(x) là lợi nhuận (tính theo triệu đồng) thu được từ việc bán x tấn sản phẩm trong một tuần. Khi đó, đạo hàm P'(x), gọi là lợi nhuận cận biên, cho biết tốc độ tăng lợi nhuận theo lượng sản phẩn bán được. Giả sử lợi nhuận cận biên (tính theo triệu đồng trên tấn) của nhà máy được ước lượng bởi công thức P'(x) = 16 – 0,02x với 0 ≤ x ≤ 100. Tính lợi nhuận nhà máy thu được khi bán 90 tấn sản phẩm trong tuần. Biết rằng nhà máy lỗ 25 triệu đồng nếu không bán được lượng sản phẩm nào trong tuần.
Câu 2:
Mặt cắt ngang của một ống dẫn khí nóng là hình vành khuyên như Hình 9. Khí bên trong ống được duy trì ở 150°C. Biết rằng nhiệt độ T(°C) tại điểm A trên thành ống là hàm số của khoảng cách x (cm) từ A đến tâm của mặt cắt và .
(Nguồn: Y.A.Cengel, A.I.Gahjar, Heat and Mass Transfer, McGraw Hill, 2015)
Tìm nhiệt độ mặt ngoài của ống.
Câu 3:
Giả sử tốc độ v (m/s) của một thang máy di chuyển từ tầng 1 lên tầng cao nhất theo thời gian t (giây) được cho bởi công thức:
Tính quãng đường chuyển động và tốc độ trung bình của thang máy.
Câu 4:
Một ô tô đang di chuyển với vận tốc 20 m/s thì hãm phanh nên tốc độ (m/s) của xe thay đổi theo thời gian t (giây) được tính theo công thức v(t) = 20 – 5t (0 ≤ t ≤ 4). Kể từ khi hãm phanh đến khi dừng, ô tô đi được quãng đường bao nhiêu?
Câu 5:
Biết rằng tốc độ v (km/phút) của một ca nô cao tốc thay đổi theo thời gian t (phút) như sau:
Tính quãng đường ca nô di chuyển được trong khoảng thời gian từ 0 đến 20 phút.
Câu 6:
Sau khi xuất phát, ô tô di chuyển với tốc độ , trong đó v(t) tính theo m/s, thời gian t tính theo giây với t = 0 là thời điểm xe xuất phát.
a) Tính quãng đường xe đi được sau 5 giây, sau 10 giây.
b) Tính tốc độ trung bình của xe trong khoảng thời gian t = 0 đến t = 10.
Câu 7:
Tính diện tích hình thang cong giới hạn bởi:
a) Đồ thị hàm số y = x2, trục hoành và hai đường thẳng x = 0, x = 2 (Hình 7);
b) Đồ thị hàm số , trục hoành và hai đường thẳng x = 1, x = 3 (Hình 8).
về câu hỏi!