Ta đã biết đồ thị hàm số y = \(\frac{{2x - 1}}{{x + 1}}\) có tiệm cận đứng là đường thẳng x = −1 và tiệm cận ngang là đường thẳng y = 2.
a) Tìm tọa độ giao điểm I của đường tiệm cận.
b) Với t tùy ý (t ≠ 0), gọi M và M' lần lượt là hai điểm trên đồ thị hàm số có hoành độ lần lượt là xM = xI – t và xM' = xI + t. Tìm các tung độ y(xM) và y(xM'). Từ đó, chứng minh rằng hai điểm M và M' đối xứng với nhau qua I.
Ta đã biết đồ thị hàm số y = \(\frac{{2x - 1}}{{x + 1}}\) có tiệm cận đứng là đường thẳng x = −1 và tiệm cận ngang là đường thẳng y = 2.
a) Tìm tọa độ giao điểm I của đường tiệm cận.
b) Với t tùy ý (t ≠ 0), gọi M và M' lần lượt là hai điểm trên đồ thị hàm số có hoành độ lần lượt là xM = xI – t và xM' = xI + t. Tìm các tung độ y(xM) và y(xM'). Từ đó, chứng minh rằng hai điểm M và M' đối xứng với nhau qua I.
Quảng cáo
Trả lời:
a) Đồ thị hàm số có tiệm cận đứng là đường thẳng x = −1 và tiệm cận ngang là đường thẳng y = 2 nên giao điểm I có tọa độ I(−1; 2).
b) Ta có: xM = xI – t = −1 – t ⇒ yM = \(\frac{{2{x_M} - 1}}{{{x_M} + 1}}\) = \(\frac{{2\left( { - 1 - t} \right) - 1}}{{\left( { - 1 - t} \right) + 1}}\)
xM' = xI + t = −1 + t ⇒ yM' = \(\frac{{2{x_{M'}} - 1}}{{{x_{M'}} + 1}}\) = \(\frac{{2\left( { - 1 + t} \right) - 1}}{{\left( { - 1 + t} \right) + 1}}\).
Do đó, yM + yM' = \(\frac{{2\left( { - 1 - t} \right) - 1}}{{\left( { - 1 - t} \right) + 1}}\) + \(\frac{{2\left( { - 1 + t} \right) - 1}}{{\left( { - 1 + t} \right) + 1}}\) = 4 = 2yI.
Mà xM + xM' = (−1 – t) + (−1 + t) = −2 = 2xI.
Vậy I là trung điểm của MM' hay M và M' đối xứng với nhau qua I.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Gọi x (dm) là độ dài cạnh đáy của chiếc hộp hình hộp chữ nhật (x > 0).
Khi đó, chiều cao của chiếc hộp là \(\frac{{10}}{{{x^2}}}\) (dm).
Diện tích toàn phần của chiếc hộp là
S = 2Sđáy + Sxq = 2x2 + 4x.\(\frac{{10}}{{{x^2}}}\) = 2x2 + \(\frac{{40}}{x}\) (dm2).
Ta có: S' = 4x – \(\frac{{40}}{{{x^2}}}\)
S' = 0 ⇔ x = \(\sqrt[3]{{10}}\).
Ta có bảng xét dấu như sau:

Do đó, diện tích toàn phần nhỏ nhất là S = \(6\sqrt[3]{{100}}\) dm2 khi x = \(\sqrt[3]{{10}}\) dm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
