Câu hỏi:

19/09/2024 574 Lưu

Ta đã biết đồ thị hàm số y = \(\frac{{2x - 1}}{{x + 1}}\) có tiệm cận đứng là đường thẳng x = −1 và tiệm cận ngang là đường thẳng y = 2.

Ta đã biết đồ thị hàm số y = (2x-1)/(x+1) có tiệm cận đứng là đường thẳng x = −1 và tiệm cận ngang là đường thẳng y = 2. (ảnh 1)

a) Tìm tọa độ giao điểm I của đường tiệm cận.

b) Với t tùy ý (t ≠ 0), gọi M và M' lần lượt là hai điểm trên đồ thị hàm số có hoành độ lần lượt là xM = xI – t và xM' = xI + t. Tìm các tung độ y(xM) và y(xM'). Từ đó, chứng minh rằng hai điểm M và M' đối xứng với nhau qua I.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đồ thị hàm số có tiệm cận đứng là đường thẳng x = −1 và tiệm cận ngang là đường thẳng y = 2 nên giao điểm I có tọa độ I(−1; 2).

b) Ta có: xM = xI – t = −1 – t ⇒ yM = \(\frac{{2{x_M} - 1}}{{{x_M} + 1}}\) = \(\frac{{2\left( { - 1 - t} \right) - 1}}{{\left( { - 1 - t} \right) + 1}}\)

                xM' = xI + t = −1 + t ⇒ yM' = \(\frac{{2{x_{M'}} - 1}}{{{x_{M'}} + 1}}\) = \(\frac{{2\left( { - 1 + t} \right) - 1}}{{\left( { - 1 + t} \right) + 1}}\).

Do đó, yM + yM' = \(\frac{{2\left( { - 1 - t} \right) - 1}}{{\left( { - 1 - t} \right) + 1}}\) + \(\frac{{2\left( { - 1 + t} \right) - 1}}{{\left( { - 1 + t} \right) + 1}}\) = 4 = 2yI.

Mà xM + xM' = (−1 – t) + (−1 + t) = −2 = 2xI.

Vậy I là trung điểm của MM' hay M và M' đối xứng với nhau qua I.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:

P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.

Ta có: P'(x) = −6x2 + 60x + 336

           P'(x) = 0 x = 14 hoặc x = −4 (loại do −4 [0; 20]).

Ta có bảng biến thiên:

Trong một ngày, tổng chi phí để một xưởng sản xuất x (kg) thành phẩm được cho bởi hàm số C(x) = 2x^3 – 30x^2 + 177x + 2 592 (nghìn đồng). Biết giá bán mỗi kilôgam thành phẩm là (ảnh 1)

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).

Vậy x = 14 kg.

 

Lời giải

Gọi x (dm) là độ dài cạnh đáy của chiếc hộp hình hộp chữ nhật (x > 0).

Khi đó, chiều cao của chiếc hộp là \(\frac{{10}}{{{x^2}}}\) (dm).

Diện tích toàn phần của chiếc hộp là

S = 2Sđáy + Sxq = 2x2 + 4x.\(\frac{{10}}{{{x^2}}}\) = 2x2 + \(\frac{{40}}{x}\) (dm2).

Ta có: S' = 4x – \(\frac{{40}}{{{x^2}}}\)

           S' = 0 x = \(\sqrt[3]{{10}}\).

Ta có bảng xét dấu như sau:

Người ta muốn làm một chiếc hộp hình hộp chữ nhật có đáy hình vuông và thể tích là 10 l. Diện tích toàn phần nhỏ nhất của hộp là bao nhiêu? (ảnh 1)

Do đó, diện tích toàn phần nhỏ nhất là S = \(6\sqrt[3]{{100}}\) dm2 khi x = \(\sqrt[3]{{10}}\) dm.

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP