Câu hỏi:
19/09/2024 712Một chủ nhà hàng kinh doanh phần ăn uống đồng giá có chiến lược kinh doanh như sau:
Phí cố định được ước tính trong một năm là 50 000 nghìn đồng.
Chi phí một phần ăn ước tính khoảng 22 nghìn đồng.
Giá niêm yết trên thực đơn là 30 nghìn đồng.
Trong bài này, giả định rằng tất cả các phần ăn chế biến sẵn đều được bán hết và kí hiệu x là số phần ăn tự phục vụ trong một năm, giả sử x thuộc khoảng [5 000; 25 000].
a) Gọi C(x) là tổng chi phí hằng năm cho x phần ăn này. Xác định C(x).
b) Chứng tỏ rằng giá thành của một phần ăn cho bởi biểu thức D(x) = 22 + \(\frac{{50000}}{x}\) (nghìn đồng).
c) Sử dụng đồ thị, hãy xác định điểm hòa vốn của nhà hàng, tức là số lượng phần ăn tối thiểu phải được phục vụ hằng năm để hoạt động của nhà hàng tạo ra lợi nhuận. Hãy chứng minh điều đó.
d) Chứng minh rằng tổng lợi nhuận hằng năm cho x phần ăn được biểu thị bởi:
L(x) = 8x – 50 000 (nghìn đồng).
e) Mục tiêu của chủ nhà hàng là tạo ra lợi nhuận ít nhất là 120 000 nghìn đồng mỗi năm. Biết rằng nhà hàng mở cửa 300 ngày một năm, hỏi trung bình mỗi ngày nhà phàng phải phục vụ ít nhất bao nhiêu phần ăn để đạt được mục tiêu trên.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có: C(x) = 22x + 50 000 (nghìn đồng).
b) Giá thành một phần ăn là: D(x) = \(\frac{{C(x)}}{x} = 22 + \frac{{50000}}{x}\) nghìn đồng.
c) Xét: \(22 + \frac{{50000}}{x}\) = 30 ⇔ x = 6250.
Ta có đồ thị hàm số:
Quan sát đồ thị hàm số, ta thấy giao điểm của đồ thị hàm số D(x) và đường thẳng y = 30 là điểm có tọa độ (6250; 30). Nghĩa là khi phục vụ được tối thiểu 6250 phần ăn thì chi phí một phần ăn bằng tiền bán một phần ăn (là 30 nghìn đồng).
Đồ thị cũng cho thấy rằng nếu phục vụ ít hơn 6250 phần ăn thì chi phí cho 1 phần ăn cao hơn giá 1 phần ăn, nghĩa là nhà hàng sẽ lỗ.
Như vậy điểm hòa vốn là 6250.
d) Tổng lợi nhuận hằng năm cho x phần ăn là
L(x) = 30x – (22x + 50 000) = 8x – 50 000 (nghìn đồng).
e) Để đạt mục tiêu lợi nhuận hằng năm ít nhất là 120 000 nghìn đồng thì số phần ăn cần bán được phải thỏa mãn bất phương trình sau:
L(x) ≥ 120 000
⇔ 8x – 50 000 ≥ 120 000
⇔ x ≥ 21 250.
Kết quả cho thấy hằng năm, nhà hàng cần phục vụ được tối thiểu 21 250 phần ăn thì mới có lợi nhuận như mong muốn.
Do nhà hàng mở cửa 300 ngày một năm nên trung bình mỗi ngày nhà hàng cần phục vụ số phần ăn là:
21 250 : 300 ≈ 70,8 phần ăn.
Vậy để đạt mục tiêu, trung bình mỗi ngày nhà hàng cần phục vụ ít nhất 71 phần ăn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Người ta muốn làm một chiếc hộp hình hộp chữ nhật có đáy hình vuông và thể tích là 10 l. Diện tích toàn phần nhỏ nhất của hộp là bao nhiêu?
Câu 2:
Từ một miếng bìa hình vuông có cạnh bằng 12 cm, người ta cắt bỏ đi bốn hình vuông nhỏ có cạnh bằng x (cm) ở bốn góc (Hình 3a) và gấp lại thành một hình hộp không nắp (Hình 3b). Tìm x để thể tích của hình hộp là lớn nhất.
Câu 3:
Trong một ngày, tổng chi phí để một xưởng sản xuất x (kg) thành phẩm được cho bởi hàm số C(x) = 2x3 – 30x2 + 177x + 2 592 (nghìn đồng). Biết giá bán mỗi kilôgam thành phẩm là 513 nghìn đồng và công suất tối đa của xưởng 20 kg trong một ngày. Khối lượng thành phẩm xưởng nên sản xuất trong trong một ngày là bao nhiêu để lợi nhuận thu được của xưởng trong một ngày là cao nhất?
Câu 4:
Người ta thấy rằng trong vòng 3 năm tính từ đầu năm 2020, giá thành P của một loại sản phẩm vào tháng thứ t thay đổi theo công thức
P(t) = 80t3 – 3 600t2 + 48 000t + 100 000 (đồng) với 0 ≤ t ≤ 36.
Hãy cho biết trong khoảng thời gian nào giá thành sản phẩm tăng, trong khoảng thời gian nào giá thành sản phẩm giảm. Giá thành đạt cực đại và cực tiểu vào thời điểm nào?
Câu 5:
Cho hình thang có đáy nhỏ và cạnh bên bằng nhau và bằng 5. Tìm diện tích lớn nhất của hình thang cân đó.
Câu 6:
Cho điểm A di động trên nửa đường tròn tâm O đường kính MN = 20 cm, \(\widehat {MOA}\) = α với 0 ≤ α ≤ π. Lấy điểm B thuộc nửa đường tròn và C, D thuộc đường kính MN được xác định sao cho ABCD là hình chữ nhật. Khi A di động từ trái sang phải, trong các khoảng nào của α thì diện tích của hình chữ nhật ABCD tăng, trong khoảng nào của α thì diện tích hình chữ nhật ABCD giảm?
Câu 7:
Một cửa hàng ước tính số lượng sản phẩm q (0 ≤ q ≤ 100) bán được phụ thuộc vào giá bán p (tính bằng nghìn đồng) theo công thức p + 2q = 300. Chi phi cửa hàng cần chi để nhập về q sản phẩm là C(p) = 0,05p3 – 5,7q2 + 295q + 300 (nghìn đồng).
a) Viết công thức tính lợi nhuận l của cửa hàng khi nhập về và bán được q sản phẩm.
b) Trong khoảng nào của q thì lợi nhuận sẽ tăng khi q tăng, trong khoảng nào thì lợi nhuận giảm khi q tăng?
về câu hỏi!