Câu hỏi:

19/09/2024 9,512

Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức P(q) = −q3 + 24q2 + 780q – 5000 (nghìn đồng) trong đó q (kg) là khối lượng sản xuất được. Xưởng chỉ sản xuất được tối đa 50 kg sản phẩm trong một tuần.

a) Xưởng sản xuất càng nhiều thì lợi nhuận càng cao.

b) Lợi nhuận lớn nhất khi xưởng sản xuất 26 kg sản phẩm trong một tuần.

c) Sau khi sản xuất được 26 kg sản phẩm, càng sản xuất thêm thì lợi nhuận càng giảm.

d) Lợi nhuận của xưởng thấp nhất khi không sản xuất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) S

b) Đ

c) Đ

d) S

 

Ta có: P(q) = −q3 + 24q2 + 780q – 5000 với 0 ≤ q ≤ 50.

           P'(q) = −3q2 + 48q + 780

           P'(q) = 0 q = 26 hoặc q = −10 (loại do 0 ≤ q ≤ 50).

Ta có bảng biến thiên:

Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức P(q) = −q^3 + 24q^2 + 780q – 5000 (nghìn đồng) trong đó q (kg) là khối lượng sản xuất được. Xưởng chỉ sản xuất được tối đa 50 kg sản phẩm trong một tuần. (ảnh 1)

Dựa vào bảng biến thiên, ta thấy:

Xưởng sản xuất càng nhiều thì lợi nhuận càng giảm.

Lợi nhuận lớn nhất khi xưởng sản xuất 26 kg sản phẩm trong một tuần.

Sau khi sản xuất được 26 kg sản phẩm, càng sản xuất thêm thì lợi nhuận càng giảm.

Lợi nhuận sản xuất thấp nhất khi xưởng sản xuất tối đa 50 kg.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:

P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.

Ta có: P'(x) = −6x2 + 60x + 336

           P'(x) = 0 x = 14 hoặc x = −4 (loại do −4 [0; 20]).

Ta có bảng biến thiên:

Trong một ngày, tổng chi phí để một xưởng sản xuất x (kg) thành phẩm được cho bởi hàm số C(x) = 2x^3 – 30x^2 + 177x + 2 592 (nghìn đồng). Biết giá bán mỗi kilôgam thành phẩm là (ảnh 1)

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).

Vậy x = 14 kg.

 

Lời giải

Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.

           h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)

          h'(t) = 0 x = 7 hoặc x = \(\frac{{37}}{5}\).

Bảng xét dấu:

Độ cao (tính bằng mét) của tàu lượn siêu tốc so với mặt đất sau t (giây) (0 ≤ t ≤ 20) từ lúc bắt đầu được cho bởi công thức  (ảnh 1)

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP