Cho hàm số \(y = \frac{{{x^2} + 2x - 2}}{{x - 1}}\).
a) Tìm tọa độ giao điểm I của hai đường tiệm cận của đồ thị hàm số.
b) Với t tùy ý (t ≠ 0), gọi M và M' lần lượt là hai điểm trên đồ thị hàm số có hoành độ lần lượt là xM = xI – t và xM' = xI + t. so sánh các tung độ yM và yM'. Từ đó, suy ra rằng hai điểm M và M' đối xứng với nhau qua I.
Cho hàm số \(y = \frac{{{x^2} + 2x - 2}}{{x - 1}}\).
a) Tìm tọa độ giao điểm I của hai đường tiệm cận của đồ thị hàm số.
b) Với t tùy ý (t ≠ 0), gọi M và M' lần lượt là hai điểm trên đồ thị hàm số có hoành độ lần lượt là xM = xI – t và xM' = xI + t. so sánh các tung độ yM và yM'. Từ đó, suy ra rằng hai điểm M và M' đối xứng với nhau qua I.
Quảng cáo
Trả lời:
a) Ta có: \(y = \frac{{{x^2} + 2x - 2}}{{x - 1}}\) = x + 3 + \(\frac{1}{{x - 1}}\)
\(\mathop {\lim }\limits_{x \to {1^ + }} y = + \infty \), \(\mathop {\lim }\limits_{x \to {1^ - }} y = - \infty \). Do đó, x = 1 là đường tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x + 3} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{x - 1}} = 0\). Do đó, y = x + 3 là đường tiệm cận xiên của đồ thị hàm số.
Nhận thấy đồ thị hàm số có tiệm cận đứng x = 1 và tiệm cận ngang y = x + 3. Vậy giao điểm I có tọa độ I(1; 4).
b) Ta có: xM = xI – t = 1 – t; xM' = xI + t = 1 + t
yM = \(\frac{{x_M^2 + 2{x_M} - 2}}{{{x_M} - 1}} = \frac{{{{\left( {1 - t} \right)}^2} + 2\left( {1 - t} \right) - 2}}{{\left( {1 - t} \right) - 1}}\)
yM' = \(\frac{{x_{M'}^2 + 2{x_{M'}} - 2}}{{{x_{M'}} - 1}} = \frac{{{{\left( {1 + t} \right)}^2} + 2\left( {1 + t} \right) - 2}}{{\left( {1 + t} \right) - 1}}\)
Do đó, yM + yM' = \(\frac{{{{\left( {1 - t} \right)}^2} + 2\left( {1 - t} \right) - 2}}{{\left( {1 - t} \right) - 1}}\) + \(\frac{{{{\left( {1 + t} \right)}^2} + 2\left( {1 + t} \right) - 2}}{{\left( {1 + t} \right) - 1}}\) = 8 = 2yI.
Suy ra I là trung điểm của MM' hay M và M' đối xứng với nhau qua I.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.
h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)
h'(t) = 0 ⇔ x = 7 hoặc x = \(\frac{{37}}{5}\).
Bảng xét dấu:

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.