Câu hỏi:
19/09/2024 3,418
Cho hàm số \(y = \frac{{{x^2} + 2x - 2}}{{x - 1}}\).
a) Tìm tọa độ giao điểm I của hai đường tiệm cận của đồ thị hàm số.
b) Với t tùy ý (t ≠ 0), gọi M và M' lần lượt là hai điểm trên đồ thị hàm số có hoành độ lần lượt là xM = xI – t và xM' = xI + t. so sánh các tung độ yM và yM'. Từ đó, suy ra rằng hai điểm M và M' đối xứng với nhau qua I.
Cho hàm số \(y = \frac{{{x^2} + 2x - 2}}{{x - 1}}\).
a) Tìm tọa độ giao điểm I của hai đường tiệm cận của đồ thị hàm số.
b) Với t tùy ý (t ≠ 0), gọi M và M' lần lượt là hai điểm trên đồ thị hàm số có hoành độ lần lượt là xM = xI – t và xM' = xI + t. so sánh các tung độ yM và yM'. Từ đó, suy ra rằng hai điểm M và M' đối xứng với nhau qua I.
Quảng cáo
Trả lời:
a) Ta có: \(y = \frac{{{x^2} + 2x - 2}}{{x - 1}}\) = x + 3 + \(\frac{1}{{x - 1}}\)
\(\mathop {\lim }\limits_{x \to {1^ + }} y = + \infty \), \(\mathop {\lim }\limits_{x \to {1^ - }} y = - \infty \). Do đó, x = 1 là đường tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x + 3} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{x - 1}} = 0\). Do đó, y = x + 3 là đường tiệm cận xiên của đồ thị hàm số.
Nhận thấy đồ thị hàm số có tiệm cận đứng x = 1 và tiệm cận ngang y = x + 3. Vậy giao điểm I có tọa độ I(1; 4).
b) Ta có: xM = xI – t = 1 – t; xM' = xI + t = 1 + t
yM = \(\frac{{x_M^2 + 2{x_M} - 2}}{{{x_M} - 1}} = \frac{{{{\left( {1 - t} \right)}^2} + 2\left( {1 - t} \right) - 2}}{{\left( {1 - t} \right) - 1}}\)
yM' = \(\frac{{x_{M'}^2 + 2{x_{M'}} - 2}}{{{x_{M'}} - 1}} = \frac{{{{\left( {1 + t} \right)}^2} + 2\left( {1 + t} \right) - 2}}{{\left( {1 + t} \right) - 1}}\)
Do đó, yM + yM' = \(\frac{{{{\left( {1 - t} \right)}^2} + 2\left( {1 - t} \right) - 2}}{{\left( {1 - t} \right) - 1}}\) + \(\frac{{{{\left( {1 + t} \right)}^2} + 2\left( {1 + t} \right) - 2}}{{\left( {1 + t} \right) - 1}}\) = 8 = 2yI.
Suy ra I là trung điểm của MM' hay M và M' đối xứng với nhau qua I.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.
h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)
h'(t) = 0 ⇔ x = 7 hoặc x = \(\frac{{37}}{5}\).
Bảng xét dấu:

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.