Câu hỏi:

18/09/2024 9,189 Lưu

Từ một miếng bìa hình vuông có cạnh bằng 12 cm, người ta cắt bỏ đi bốn hình vuông nhỏ có cạnh bằng x (cm) ở bốn góc (Hình 3a) và gấp lại thành một hình hộp không nắp (Hình 3b). Tìm x để thể tích của hình hộp là lớn nhất.

Từ một miếng bìa hình vuông có cạnh bằng 12 cm, người ta cắt bỏ đi bốn hình vuông nhỏ có cạnh bằng x (cm) ở bốn góc (Hình 3a) và gấp lại thành một hình hộp không nắp (Hình 3b). Tìm x để thể tích của hình hộp là lớn nhất. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chiếc hộp sau khi gấp có cạnh đáy là: 12 – 2x (cm) với 0 < x < 6.

Thể tích của chiếc hộp lúc này là: V = x(12 – 2x)2 với 0 < x < 6.

Ta có: V' = (12 – 2x)2 – 4x(12 – 2x) = 12x2 – 96x +144

           V' = 0 x = 2 hoặc x = 6 (loại do 6 (0; 6)).

Ta có bảng biến thiên:

Từ một miếng bìa hình vuông có cạnh bằng 12 cm, người ta cắt bỏ đi bốn hình vuông nhỏ có cạnh bằng x (cm) ở bốn góc (Hình 3a) và gấp lại thành một hình hộp không nắp (Hình 3b). Tìm x để thể tích của hình hộp là lớn nhất. (ảnh 2)

Vậy thể tích chiếc hộp lớn nhất là 128 cm3 khi x = 2 (cm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:

P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.

Ta có: P'(x) = −6x2 + 60x + 336

           P'(x) = 0 x = 14 hoặc x = −4 (loại do −4 [0; 20]).

Ta có bảng biến thiên:

Trong một ngày, tổng chi phí để một xưởng sản xuất x (kg) thành phẩm được cho bởi hàm số C(x) = 2x^3 – 30x^2 + 177x + 2 592 (nghìn đồng). Biết giá bán mỗi kilôgam thành phẩm là (ảnh 1)

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).

Vậy x = 14 kg.

 

Lời giải

Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.

           h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)

          h'(t) = 0 x = 7 hoặc x = \(\frac{{37}}{5}\).

Bảng xét dấu:

Độ cao (tính bằng mét) của tàu lượn siêu tốc so với mặt đất sau t (giây) (0 ≤ t ≤ 20) từ lúc bắt đầu được cho bởi công thức  (ảnh 1)

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP