Câu hỏi:

19/09/2024 1,056 Lưu

Cho hàm số y = \(\frac{{\left( {m - 1} \right)x - 2}}{{m - 2 - x}}\) (m là tham số). Tìm điều kiện của m để đồ thị hàm số đã cho có một nhánh nằm hoàn toàn trong góc phần tư thứ nhất của hệ trục Oxy.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Công thức hàm số có dạng y = \(\frac{{ax + b}}{{cx + d}}\) với a = m – 1; b = −2; c = −1, d = m – 2.

Yêu cầu của bài toán được thỏa mãn khi và chỉ khi hàm số nghịch biến và có tiệm cận đứng không ở bên trái trục Oy, tiệm cận ngang không ở bên dưới trục Ox, nghĩa là:

\(\left\{ \begin{array}{l}ad - bc < 0\\c \ne 0\\\frac{a}{c} \ge 0\\ - \frac{d}{c} \ge 0\end{array} \right.\) ⇔ \(\left\{ \begin{array}{l}\left( {m - 1} \right)\left( {m - 2} \right) - \left( { - 2} \right)\left( { - 1} \right) < 0\\ - 1 \ne 0\\\frac{{m - 1}}{{ - 1}} \ge 0\\\frac{{m - 2}}{1} \ge 0\end{array} \right.\) ⇔ \(\left\{ \begin{array}{l}0 < m < 3\\m \le 1\\m \ge 2.\end{array} \right.\)

Vậy không có giá trị m thỏa mãn yêu cầu.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:

P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.

Ta có: P'(x) = −6x2 + 60x + 336

           P'(x) = 0 x = 14 hoặc x = −4 (loại do −4 [0; 20]).

Ta có bảng biến thiên:

Trong một ngày, tổng chi phí để một xưởng sản xuất x (kg) thành phẩm được cho bởi hàm số C(x) = 2x^3 – 30x^2 + 177x + 2 592 (nghìn đồng). Biết giá bán mỗi kilôgam thành phẩm là (ảnh 1)

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).

Vậy x = 14 kg.

 

Lời giải

Gọi x (dm) là độ dài cạnh đáy của chiếc hộp hình hộp chữ nhật (x > 0).

Khi đó, chiều cao của chiếc hộp là \(\frac{{10}}{{{x^2}}}\) (dm).

Diện tích toàn phần của chiếc hộp là

S = 2Sđáy + Sxq = 2x2 + 4x.\(\frac{{10}}{{{x^2}}}\) = 2x2 + \(\frac{{40}}{x}\) (dm2).

Ta có: S' = 4x – \(\frac{{40}}{{{x^2}}}\)

           S' = 0 x = \(\sqrt[3]{{10}}\).

Ta có bảng xét dấu như sau:

Người ta muốn làm một chiếc hộp hình hộp chữ nhật có đáy hình vuông và thể tích là 10 l. Diện tích toàn phần nhỏ nhất của hộp là bao nhiêu? (ảnh 1)

Do đó, diện tích toàn phần nhỏ nhất là S = \(6\sqrt[3]{{100}}\) dm2 khi x = \(\sqrt[3]{{10}}\) dm.

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP