Câu hỏi:
19/09/2024 643
Cho hàm số y = \(\frac{{\left( {m - 1} \right)x - 2}}{{m - 2 - x}}\) (m là tham số). Tìm điều kiện của m để đồ thị hàm số đã cho có một nhánh nằm hoàn toàn trong góc phần tư thứ nhất của hệ trục Oxy.
Cho hàm số y = \(\frac{{\left( {m - 1} \right)x - 2}}{{m - 2 - x}}\) (m là tham số). Tìm điều kiện của m để đồ thị hàm số đã cho có một nhánh nằm hoàn toàn trong góc phần tư thứ nhất của hệ trục Oxy.
Quảng cáo
Trả lời:
Công thức hàm số có dạng y = \(\frac{{ax + b}}{{cx + d}}\) với a = m – 1; b = −2; c = −1, d = m – 2.
Yêu cầu của bài toán được thỏa mãn khi và chỉ khi hàm số nghịch biến và có tiệm cận đứng không ở bên trái trục Oy, tiệm cận ngang không ở bên dưới trục Ox, nghĩa là:
\(\left\{ \begin{array}{l}ad - bc < 0\\c \ne 0\\\frac{a}{c} \ge 0\\ - \frac{d}{c} \ge 0\end{array} \right.\) ⇔ \(\left\{ \begin{array}{l}\left( {m - 1} \right)\left( {m - 2} \right) - \left( { - 2} \right)\left( { - 1} \right) < 0\\ - 1 \ne 0\\\frac{{m - 1}}{{ - 1}} \ge 0\\\frac{{m - 2}}{1} \ge 0\end{array} \right.\) ⇔ \(\left\{ \begin{array}{l}0 < m < 3\\m \le 1\\m \ge 2.\end{array} \right.\)
Vậy không có giá trị m thỏa mãn yêu cầu.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.
h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)
h'(t) = 0 ⇔ x = 7 hoặc x = \(\frac{{37}}{5}\).
Bảng xét dấu:

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.