Cho hàm số y = \(\frac{{{x^2} + 2x - m}}{{x - 1}}\) (m là tham số).
a) Tìm m để đồ thị hàm số đã cho có hai điểm cực trị.
b) Chứng tỏ rằng khi m = 2, hàm số có hai điểm cực trị. Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số này.
Cho hàm số y = \(\frac{{{x^2} + 2x - m}}{{x - 1}}\) (m là tham số).
a) Tìm m để đồ thị hàm số đã cho có hai điểm cực trị.
b) Chứng tỏ rằng khi m = 2, hàm số có hai điểm cực trị. Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số này.
Quảng cáo
Trả lời:
a) y = \(\frac{{{x^2} + 2x - m}}{{x - 1}}\)
Tập xác định: D = ℝ\{1}.
Ta có: y' = \(\frac{{{x^2} - 2x + m - 2}}{{{{\left( {x - 1} \right)}^2}}}\)
a) Đồ thị hàm số đã cho có hai cực trị khi và chỉ khi phương trình y' = 0 có hai nghiệm phân biệt.
⇔ x2 – 2x + m – 2 = 0 có hai nghiệm phân biệt.
⇔ ∆' > 0 ⇔ 3 – m > 0 ⇔ m < 3.
Đồ thị hàm số đã cho có hai cực trị khi m < 3.
b) Nhận thấy m = 2 thỏa mãn điều kiện m < 3 nên khi đó hàm số có hai cực trị.
Với m = 2, ta có: y = \(\frac{{{x^2} + 2x - 2}}{{x - 1}}\) và y' = \(\frac{{{x^2} - 2x}}{{{{\left( {x - 1} \right)}^2}}}\).
Phương trình y' = 0 ⇔ \(\frac{{{x^2} - 2x}}{{{{\left( {x - 1} \right)}^2}}}\) = 0 ⇔ x = 0 hoặc x = 2.
Với x = 0 thì y = 2, với x = 2 thì y = 6.
Phương trình đường thẳng đi qua hai điểm cực trị có dạng y = ax + b.
Giải hệ phương trình, ta có: \(\left\{ \begin{array}{l}a.0 + b = 2\\a.2 + b = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 2\end{array} \right.\).
Vậy y = 2x + 2.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.
h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)
h'(t) = 0 ⇔ x = 7 hoặc x = \(\frac{{37}}{5}\).
Bảng xét dấu:

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.