Cho hàm số y = (m – 1)x3 + 2(m + 1)x2 – x + m – 1 (m là tham số).
a) Khảo sát và vẽ đồ thị của hàm số khi m = −1.
b) Tìm giá trị của m để tâm đối xứng của đồ thị hàm số có hoành độ x0 = −2.
Cho hàm số y = (m – 1)x3 + 2(m + 1)x2 – x + m – 1 (m là tham số).
a) Khảo sát và vẽ đồ thị của hàm số khi m = −1.
b) Tìm giá trị của m để tâm đối xứng của đồ thị hàm số có hoành độ x0 = −2.
Quảng cáo
Trả lời:
a) Khi m = −1 ta được: y = −2x3 – x – 2.
Tập xác định: D = ℝ.
Ta có: y' = −6x2 – 1
y' = 0 phương trình vô nghiệm.
Ta có bảng biến thiên:

Hàm số nghịch biến trên ℝ.
Hàm số không cực trị.
Đồ thị hàm số

b) Ta có: y = (m – 1)x3 + 2(m + 1)x2 – x + m – 1
y' = 3(m – 1)x2 + 4(m + 1)x – 1
y'' = 6(m – 1)x + 4(m + 1).
y'' = 0 ⇔ \(\left\{ \begin{array}{l}m - 1 \ne 0\\x = \frac{{ - 2\left( {m + 1} \right)}}{{3\left( {m - 1} \right)}}\end{array} \right.\).
Để tâm đối xứng của đồ thị hàm số có hoành độ x0 = −2.
⇔ \(\left\{ \begin{array}{l}m - 1 \ne 0\\\frac{{ - 2\left( {m + 1} \right)}}{{3\left( {m - 1} \right)}} = - 2\end{array} \right.\) ⇔ \(\left\{ \begin{array}{l}m \ne 1\\2m + 2 = 6m - 6\end{array} \right.\) ⇔ m = 2.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Gọi x (dm) là độ dài cạnh đáy của chiếc hộp hình hộp chữ nhật (x > 0).
Khi đó, chiều cao của chiếc hộp là \(\frac{{10}}{{{x^2}}}\) (dm).
Diện tích toàn phần của chiếc hộp là
S = 2Sđáy + Sxq = 2x2 + 4x.\(\frac{{10}}{{{x^2}}}\) = 2x2 + \(\frac{{40}}{x}\) (dm2).
Ta có: S' = 4x – \(\frac{{40}}{{{x^2}}}\)
S' = 0 ⇔ x = \(\sqrt[3]{{10}}\).
Ta có bảng xét dấu như sau:

Do đó, diện tích toàn phần nhỏ nhất là S = \(6\sqrt[3]{{100}}\) dm2 khi x = \(\sqrt[3]{{10}}\) dm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
