Câu hỏi:

19/09/2024 596

Cho hàm số y = (m – 1)x3 + 2(m + 1)x2 – x + m – 1 (m là tham số).

a) Khảo sát và vẽ đồ thị của hàm số khi m = −1.

b) Tìm giá trị của m để tâm đối xứng của đồ thị hàm số có hoành độ x0 = −2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Khi m = −1 ta được: y = −2x3 – x – 2.

Tập xác định: D = ℝ.

Ta có: y' = −6x2 – 1

           y' = 0 phương trình vô nghiệm.

Ta có bảng biến thiên:

Cho hàm số y = (m – 1)x^3 + 2(m + 1)x^2 – x + m – 1 (m là tham số). a) Khảo sát và vẽ đồ thị của hàm số khi m = −1. b) Tìm giá trị của m để tâm đối xứng của đồ thị hàm số có hoành độ x0 = −2. (ảnh 1)

Hàm số nghịch biến trên ℝ.

Hàm số không cực trị.

Đồ thị hàm số

Cho hàm số y = (m – 1)x^3 + 2(m + 1)x^2 – x + m – 1 (m là tham số). a) Khảo sát và vẽ đồ thị của hàm số khi m = −1. b) Tìm giá trị của m để tâm đối xứng của đồ thị hàm số có hoành độ x0 = −2. (ảnh 2)

b) Ta có: y = (m – 1)x3 + 2(m + 1)x2 – x + m – 1               

               y' = 3(m – 1)x2 + 4(m + 1)x – 1

               y'' = 6(m – 1)x + 4(m + 1).

               y'' = 0 \(\left\{ \begin{array}{l}m - 1 \ne 0\\x = \frac{{ - 2\left( {m + 1} \right)}}{{3\left( {m - 1} \right)}}\end{array} \right.\).

Để tâm đối xứng của đồ thị hàm số có hoành độ x0 = −2.

\(\left\{ \begin{array}{l}m - 1 \ne 0\\\frac{{ - 2\left( {m + 1} \right)}}{{3\left( {m - 1} \right)}} = - 2\end{array} \right.\) \(\left\{ \begin{array}{l}m \ne 1\\2m + 2 = 6m - 6\end{array} \right.\) m = 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:

P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.

Ta có: P'(x) = −6x2 + 60x + 336

           P'(x) = 0 x = 14 hoặc x = −4 (loại do −4 [0; 20]).

Ta có bảng biến thiên:

Trong một ngày, tổng chi phí để một xưởng sản xuất x (kg) thành phẩm được cho bởi hàm số C(x) = 2x^3 – 30x^2 + 177x + 2 592 (nghìn đồng). Biết giá bán mỗi kilôgam thành phẩm là (ảnh 1)

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).

Vậy x = 14 kg.

 

Lời giải

Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.

           h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)

          h'(t) = 0 x = 7 hoặc x = \(\frac{{37}}{5}\).

Bảng xét dấu:

Độ cao (tính bằng mét) của tàu lượn siêu tốc so với mặt đất sau t (giây) (0 ≤ t ≤ 20) từ lúc bắt đầu được cho bởi công thức  (ảnh 1)

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP