Câu hỏi:

19/09/2024 465

Khảo sát và vẽ đồ thị của các hàm số sau:

a) y = 3 + \(\frac{1}{x}\);

b) y = 2 – \(\frac{1}{{1 + x}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) y = 3 + \(\frac{1}{x}\)

Tập xác định: D = ℝ\{0}.

Giới hạn của hàm số:

\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \left( {3 + \frac{1}{x}} \right) = 3\); \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {3 + \frac{1}{x}} \right) = 3\).

Do đó, đồ thị hàm số có tiệm cận ngang y = 3.

\(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \left( {3 + \frac{1}{x}} \right) = + \infty \); \(\mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} \left( {3 + \frac{1}{x}} \right) = - \infty \).

Do đó, đồ thị hàm số có tiệm cận đứng x = 0.

Ta có: y' = \( - \frac{1}{{{x^2}}}\)

           y' < 0 với mọi x ≠ 0 nên hàm số nghịch biến trên các khoảng (−∞; 0) và (0; +∞).

Ta có bảng biến thiên:

Khảo sát và vẽ đồ thị của các hàm số sau: a) y = 3 + 1/x; b) y = 2 – 1/(1+x) (ảnh 1)

Đồ thị hàm số:

Khảo sát và vẽ đồ thị của các hàm số sau: a) y = 3 + 1/x; b) y = 2 – 1/(1+x) (ảnh 2)

b) y = 2 – \(\frac{1}{{1 + x}}\)

Tập xác định: D = ℝ\{−1}.

Giới hạn của hàm số:

\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \left( {2 - \frac{1}{{1 + x}}} \right) = 2\); \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {2 - \frac{1}{{1 + x}}} \right) = 2\).

Do đó, đồ thị hàm số có tiệm cận ngang y = 2.

\(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \left( {2 - \frac{1}{{1 + x}}} \right) = - \infty \); \(\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \left( {2 - \frac{1}{{1 + x}}} \right) = + \infty \).

Do đó, đồ thị hàm số có tiệm cận đứng x = −1.

Ta có bảng biến thiên:

Khảo sát và vẽ đồ thị của các hàm số sau: a) y = 3 + 1/x; b) y = 2 – 1/(1+x) (ảnh 3)

Ta có: y' = \(\frac{1}{{{{\left( {1 + x} \right)}^2}}}\) > 0 với mọi x ≠ −1 nên hàm số đồng biến trên khoảng (−∞; −1) và (−1; +∞).

Đồ thị hàm số:

Khảo sát và vẽ đồ thị của các hàm số sau: a) y = 3 + 1/x; b) y = 2 – 1/(1+x) (ảnh 4)

  

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:

P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.

Ta có: P'(x) = −6x2 + 60x + 336

           P'(x) = 0 x = 14 hoặc x = −4 (loại do −4 [0; 20]).

Ta có bảng biến thiên:

Trong một ngày, tổng chi phí để một xưởng sản xuất x (kg) thành phẩm được cho bởi hàm số C(x) = 2x^3 – 30x^2 + 177x + 2 592 (nghìn đồng). Biết giá bán mỗi kilôgam thành phẩm là (ảnh 1)

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).

Vậy x = 14 kg.

 

Lời giải

Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.

           h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)

          h'(t) = 0 x = 7 hoặc x = \(\frac{{37}}{5}\).

Bảng xét dấu:

Độ cao (tính bằng mét) của tàu lượn siêu tốc so với mặt đất sau t (giây) (0 ≤ t ≤ 20) từ lúc bắt đầu được cho bởi công thức  (ảnh 1)

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP