Tìm các tiệm cận của đồ thị hàm số sau:
a) \(y = \frac{{{x^2} + 2}}{{{x^2} + 2x - 3}}\);
b) y = \(\sqrt {{x^2} - 16} \).
Tìm các tiệm cận của đồ thị hàm số sau:
a) \(y = \frac{{{x^2} + 2}}{{{x^2} + 2x - 3}}\);
b) y = \(\sqrt {{x^2} - 16} \).
Quảng cáo
Trả lời:
a) Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 2}}{{{x^2} + 2x - 3}} = + \infty \); \(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2}}{{{x^2} + 2x - 3}} = - \infty \).
Do đó, đường thẳng x = 1 là đường tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to - {3^ + }} y = \mathop {\lim }\limits_{x \to - {3^ + }} \frac{{{x^2} + 2}}{{{x^2} + 2x - 3}} = - \infty \); \(\mathop {\lim }\limits_{x \to - {3^ - }} y = \mathop {\lim }\limits_{x \to - {3^ - }} \frac{{{x^2} + 2}}{{{x^2} + 2x - 3}} = + \infty \).
Do đó, đường thẳng x = −3 là tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{{x^2} + 2}}{{{x^2} + 2x - 3}} = 1\).
Do đó, đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.
b) Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( { - x} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \left[ {\sqrt {{x^2} - 16} + x} \right] = 0\).
Do đó, đường thẳng y = −x là đường tiệm cận xiên của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\sqrt {{x^2} - 16} - x} \right] = 0\).
Do đó, đường thẳng y = x là đường tiệm cận xiên của đồ thị hàm số.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.
h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)
h'(t) = 0 ⇔ x = 7 hoặc x = \(\frac{{37}}{5}\).
Bảng xét dấu:

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.