Quảng cáo
Trả lời:
a) Quan sát đồ thị hàm số, ta thấy đồ thị hàm số có đường tiệm cận ngang y = −1.
b) Quan sát đồ thị hàm số, ta thấy đồ thị hàm số có đường tiệm cận ngang y = 1 và tiệm cận đứng x = 2.
c) Quan sát đồ thị hàm số, ta thấy đồ thị hàm số có đường tiệm cận đứng x = 1 và tiệm cận xiên là đường thẳng y = ax + b đi qua hai điểm (0; 2) và (2; 0).
Giải hệ phương trình \(\left\{ \begin{array}{l}0.a + b = 2\\2a + b = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}b = 2\\a = - 1\end{array} \right.\).
Vậy đường tiệm cận xiên của đồ thị hàm số là y = −x + 2.
d) Quan sát đồ thị hàm số, ta thấy đồ thị hàm số có hai đường tiệm cận xiên.
Đường tiệm cận xiên thứ nhất y = a1x + b1 đi qua hai điểm có tọa độ (0; −3) và (4; 0).
Giải hệ phương trình, ta được: \(\begin{array}{l}\left\{ \begin{array}{l}{a_1}.0 + {b_1} = - 3\\{a_1}.4 + {b_1} = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{a_1} = \frac{3}{4}\\{b_1} = - 3\end{array} \right.\\\end{array}\).
Do đó, đường tiệm cận xiên thứ nhất là y = \(\frac{3}{4}x - 3.\)
Đường tiệm cận xiên thứ hai y = a2x + b2 đi qua hai điểm có tọa độ (0; 3) và (4; 0).
Giải hệ phương trình, ta được: \(\begin{array}{l}\left\{ \begin{array}{l}{a_2}.0 + {b_2} = 3\\{a_2}.4 + {b_2} = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{a_1} = - \frac{3}{4}\\{b_1} = 3\end{array} \right.\\\end{array}\).
Do đó, đường tiệm cận xiên thứ hai là: y = \( - \frac{3}{4}x + 3.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.
h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)
h'(t) = 0 ⇔ x = 7 hoặc x = \(\frac{{37}}{5}\).
Bảng xét dấu:

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.