Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Quan sát đồ thị hàm số, ta thấy đồ thị hàm số có đường tiệm cận ngang y = −1.

b) Quan sát đồ thị hàm số, ta thấy đồ thị hàm số có đường tiệm cận ngang y = 1 và tiệm cận đứng x = 2.

c) Quan sát đồ thị hàm số, ta thấy đồ thị hàm số có đường tiệm cận đứng x = 1 và tiệm cận xiên là đường thẳng y = ax + b đi qua hai điểm (0; 2) và (2; 0).

Giải hệ phương trình \(\left\{ \begin{array}{l}0.a + b = 2\\2a + b = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}b = 2\\a =  - 1\end{array} \right.\).

Vậy đường tiệm cận xiên của đồ thị hàm số là y = −x + 2.

d) Quan sát đồ thị hàm số, ta thấy đồ thị hàm số có hai đường tiệm cận xiên.

Đường tiệm cận xiên thứ nhất y = a1x + b1 đi qua hai điểm có tọa độ (0; −3) và (4; 0).

Giải hệ phương trình, ta được: \(\begin{array}{l}\left\{ \begin{array}{l}{a_1}.0 + {b_1} =  - 3\\{a_1}.4 + {b_1} = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{a_1} = \frac{3}{4}\\{b_1} =  - 3\end{array} \right.\\\end{array}\).

Do đó, đường tiệm cận xiên thứ nhất là y = \(\frac{3}{4}x - 3.\)

Đường tiệm cận xiên thứ hai y = a2x + b2 đi qua hai điểm có tọa độ (0; 3) và (4; 0).

Giải hệ phương trình, ta được: \(\begin{array}{l}\left\{ \begin{array}{l}{a_2}.0 + {b_2} = 3\\{a_2}.4 + {b_2} = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{a_1} =  - \frac{3}{4}\\{b_1} = 3\end{array} \right.\\\end{array}\).

Do đó, đường tiệm cận xiên thứ hai là: y = \( - \frac{3}{4}x + 3.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:

P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.

Ta có: P'(x) = −6x2 + 60x + 336

           P'(x) = 0 x = 14 hoặc x = −4 (loại do −4 [0; 20]).

Ta có bảng biến thiên:

Trong một ngày, tổng chi phí để một xưởng sản xuất x (kg) thành phẩm được cho bởi hàm số C(x) = 2x^3 – 30x^2 + 177x + 2 592 (nghìn đồng). Biết giá bán mỗi kilôgam thành phẩm là (ảnh 1)

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).

Vậy x = 14 kg.

 

Lời giải

Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.

           h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)

          h'(t) = 0 x = 7 hoặc x = \(\frac{{37}}{5}\).

Bảng xét dấu:

Độ cao (tính bằng mét) của tàu lượn siêu tốc so với mặt đất sau t (giây) (0 ≤ t ≤ 20) từ lúc bắt đầu được cho bởi công thức  (ảnh 1)

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP