Câu hỏi:

19/09/2024 1,078 Lưu

Chi phí để làm sạch p% lượng dầu loang từ một sự cố trên biển có thể được xấp xỉ bởi công thức

C(p) = \(\frac{{2000p}}{{100 - p}}\) (tỉ đồng).

a) Tính chi phí để làm sạch 95%, 96%, 97%, 98% và 99% lượng dầu loang.

b) Tìm các tiệm cận của đồ thị hàm số C(p).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có: C(95) = \(\frac{{2000.95}}{{100 - 95}} = 38000\) tỉ đồng.

               C(96) = \(\frac{{2000.96}}{{100 - 96}} = 48000\) tỉ đồng.

               C(97) = \(\frac{{2000.97}}{{100 - 97}} = \frac{{194000}}{3}\) tỉ đồng.

               C(98) = \(\frac{{2000.98}}{{100 - 98}} = 96000\)tỉ đồng.

               C(99) =  \(\frac{{2000.99}}{{100 - 99}} = 198000\) tỉ đồng.

b) Ta có: C(p) = \(\frac{{2000p}}{{100 - p}}\)

             \(\mathop {\lim }\limits_{p \to {{100}^ + }} C\left( p \right) = \mathop {\lim }\limits_{p \to {{100}^ + }} \frac{{2000p}}{{100 - p}} =  + \infty \); \(\mathop {\lim }\limits_{p \to {{100}^ - }} C\left( p \right) = \mathop {\lim }\limits_{p \to {{100}^ - }} \frac{{2000p}}{{100 - p}} =  - \infty \).

Do đó, đồ thị hàm số có đường tiệm cận đứng p = 100.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:

P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.

Ta có: P'(x) = −6x2 + 60x + 336

           P'(x) = 0 x = 14 hoặc x = −4 (loại do −4 [0; 20]).

Ta có bảng biến thiên:

Trong một ngày, tổng chi phí để một xưởng sản xuất x (kg) thành phẩm được cho bởi hàm số C(x) = 2x^3 – 30x^2 + 177x + 2 592 (nghìn đồng). Biết giá bán mỗi kilôgam thành phẩm là (ảnh 1)

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).

Vậy x = 14 kg.

 

Lời giải

Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.

           h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)

          h'(t) = 0 x = 7 hoặc x = \(\frac{{37}}{5}\).

Bảng xét dấu:

Độ cao (tính bằng mét) của tàu lượn siêu tốc so với mặt đất sau t (giây) (0 ≤ t ≤ 20) từ lúc bắt đầu được cho bởi công thức  (ảnh 1)

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP