Quảng cáo
Trả lời:

- Tạo các thanh trượt biểu thị các tham số a, b, c, d
- Nhập hàm số vào ô lệnh.
- Nhập phương trình hai đường tiệm cận x = 1; y = −1.
- Ta được đồ thị như hình vẽ
Nhận xét
Hàm số đồng biến trên khoảng (−∞; 1) và (1; +∞).
Hàm số không có cực trị.
Đồ thị hàm số nhận x = 1 là tiệm cận đứng và y = −1 là tiệm cận ngang.
Tâm đối xứng của đồ thị hàm số là (1; −1).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
- Tạo các thanh trượt biểu thị các tham số a, b, c, m, n
- Nhập hàm số vào vùng nhập lệnh.
- Nhập hai đường tiệm cận x = 1; y = x + 2.
- Ta vẽ được đồ thị hàm số như hình vẽ sau
Nhận xét
Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Hàm số nghịch biến trên các khoảng (0; 1) và (1; 2).
Đồ thị hàm số nhận x = 1 làm tiệm cận đứng và y = x + 2 làm tiệm cân xiên.
Đồ thị hàm số nhận (1; 3) làm tâm đối xứng.
Lời giải
- Tạo các thanh trượt biểu thị các tham số a, b, c, m, n
- Nhập hàm số vào vùng nhập lệnh.
- Nhập hai đường tiệm cận x = 1; y = −x.
- Ta vẽ được đồ thị hàm số như hình vẽ sau
Nhận xét
Hàm số nghịch biến trên các khoảng (−∞; 0) và (2; +∞).
Hàm số đồng biến trên các khoảng (0; 1) và (1; 2).
Đồ thị hàm số nhận x = 1 làm tiệm cận đứng và y = −x làm tiệm cận xiên.
Đồ thị hàm số nhận (1; −1) làm tâm đối xứng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.