Câu hỏi:

19/09/2024 4,843

Một lớp học có 40% học sinh là nam. Số học sinh nữ bị cận thị chiếm 20% số học sinh trong lớp. Chọn ngẫu nhiên 1 học sinh của lớp. tính xác suất để học sinh đó bị cận thị, biết rằng học sinh đó là nữ. Làm tròn kết quả đến hàng phần trăm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi A là biến cố “Học sinh được chọn là nữ”, B là biến cố “Học sinh được chọn bị cận thị”. Ta cần tính P(B | A).

Do có 40% học sinh là nam nên P(A) = 1 – 0,4 = 0,6.

Do có 20% học sinh nữ bị cận thị trong tổng số học sinh của lớp nên P(AB) = 0,2.

Vậy P(B | A) = \(\frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,2}}{{0,6}} = \frac{1}{3}\) ≈ 0,33.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì \(\overline A B\) và AB là hai biến cố xung khắc và \(\overline A B\) AB = B nên theo tính chất của xác suất, ta có P(B) = P(\(\overline A B\)) + P(AB) = 0,2 + 0,3 = 0,5.

Ta có: P(\(\overline B \)) = 1 – P(B) = 1 – 0,5 = 0,5.

Theo công thức tinh xác suất có điều kiện, ta có:

P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,3}}{{0,5}} = 0,6\); P(A | \(\overline B \)) = \(\frac{{P\left( {A\overline B } \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,4}}{{0,5}} = 0,8\).

Ta có: P(\(\overline A \) | B) = 1 – P(A | B) = 1 – 0,6 = 0,4.

           P(\(\overline A \) | \(\overline B \)) = 1 – P(A | \(\overline B \)) = 1 – 0,8 = 0,2.

Lời giải

Theo quy tắc cộng xác suất, ta có P(AB) = P(A) + P(B) – P(AB).

Do đó, P(AB) = P(A) + P(B) – P(AB) = 0,4 + 0,8 – 0,9 = 0,3.

Theo công thức tính xác suất có điều kiện, ta có:

P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,3}}{{0,8}}\) = 0,375.

Vì \(A\overline B \) và AB là hai biến cố xung khắc và \(A\overline B \) AB = A nên theo tính chất của xác suất, ta có P(\(A\overline B \)) = P(A) – P(AB) = 0,4 – 0,3 = 0,1.

Ta có: P(\(\overline B \)) = 1 – P(B) = 1 – 0,8 = 0,2.

Theo công thức tính xác suất có điều kiện, ta có: P(A | \(\overline B \)) = \(\frac{{P\left( {\overline A |B} \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,1}}{{0,2}} = 0,5.\)

Ta có: P(\(\overline A \) | B) = 1 – P(A | B) = 1 – 0,375 = 0,625.

           P(\(\overline A \) | \(\overline B \)) = 1 – P(A | \(\overline B \)) = 1 – 0,5 = 0,5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay