Trong một đợt khám sức khỏe, người ta thấy có 15% người dân ở một khu vực mắc bệnh béo phì. Tỉ lệ người béo phì và thường xuyên tập thể dục là 2%. Biết rằng tỉ lệ người thường xuyên tập thể dục ở khu vực đó là 40%. Theo kết quả điều tra trên, việc tập thể dục sẽ làm giảm khả năng béo phì đi bao nhiêu lần?
Trong một đợt khám sức khỏe, người ta thấy có 15% người dân ở một khu vực mắc bệnh béo phì. Tỉ lệ người béo phì và thường xuyên tập thể dục là 2%. Biết rằng tỉ lệ người thường xuyên tập thể dục ở khu vực đó là 40%. Theo kết quả điều tra trên, việc tập thể dục sẽ làm giảm khả năng béo phì đi bao nhiêu lần?
Quảng cáo
Trả lời:

Gọi A là biến cố “Một người thường xuyên tập thể dục”, B là biến cố “Một người bị béo phì”. Ta có: P(B) = 0,15; P(AB) = 0,02; P(A) = 0,4.
Do đó, P(\(\overline A \)) = 1 – P(A) = 1 – 0,4 = 0,6.
Vì \(\overline A B\) và AB là hai biến cố xung khắc và \(\overline A B\) ∪ AB = B nên theo tính chất của xác suất, ta có P(\(\overline A B\)) = P(B) – P(AB) = 0,15 – 0,02 = 0,13.
Xác suất để một người mắc bệnh béo phì, biết rằng người đó không thường xuyên tập thể dục là P(B | \(\overline A \)) = \[\frac{{P\left( {\overline A B} \right)}}{{P\left( {\overline A } \right)}} = \frac{{0,13}}{{0,6}} = \frac{{13}}{{60}}.\]
Xác suất để một người mắc bệnh béo phì, biết rằng người đó thường xuyên tập thể dục là P(B | A) = \[\frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,02}}{{0,4}} = \frac{1}{{20}} = 0,05.\]
Ta có: \[\frac{{P\left( {B|\overline A } \right)}}{{P\left( {B|A} \right)}} = \frac{{13}}{{60}}:\frac{1}{{20}} = \frac{{13}}{3} \approx 4,33.\]
Vậy theo kết quả điều tra trên, việc tập thể dục sẽ làm giảm khả năng bị béo phì khoảng 4,33 lần.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(\overline A B\) và AB là hai biến cố xung khắc và \(\overline A B\) ∪ AB = B nên theo tính chất của xác suất, ta có P(B) = P(\(\overline A B\)) + P(AB) = 0,2 + 0,3 = 0,5.
Ta có: P(\(\overline B \)) = 1 – P(B) = 1 – 0,5 = 0,5.
Theo công thức tinh xác suất có điều kiện, ta có:
P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,3}}{{0,5}} = 0,6\); P(A | \(\overline B \)) = \(\frac{{P\left( {A\overline B } \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,4}}{{0,5}} = 0,8\).
Ta có: P(\(\overline A \) | B) = 1 – P(A | B) = 1 – 0,6 = 0,4.
P(\(\overline A \) | \(\overline B \)) = 1 – P(A | \(\overline B \)) = 1 – 0,8 = 0,2.
Lời giải
Theo quy tắc cộng xác suất, ta có P(A∪B) = P(A) + P(B) – P(AB).
Do đó, P(AB) = P(A) + P(B) – P(A∪B) = 0,4 + 0,8 – 0,9 = 0,3.
Theo công thức tính xác suất có điều kiện, ta có:
P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,3}}{{0,8}}\) = 0,375.
Vì \(A\overline B \) và AB là hai biến cố xung khắc và \(A\overline B \)∪ AB = A nên theo tính chất của xác suất, ta có P(\(A\overline B \)) = P(A) – P(AB) = 0,4 – 0,3 = 0,1.
Ta có: P(\(\overline B \)) = 1 – P(B) = 1 – 0,8 = 0,2.
Theo công thức tính xác suất có điều kiện, ta có: P(A | \(\overline B \)) = \(\frac{{P\left( {\overline A |B} \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,1}}{{0,2}} = 0,5.\)
Ta có: P(\(\overline A \) | B) = 1 – P(A | B) = 1 – 0,375 = 0,625.
P(\(\overline A \) | \(\overline B \)) = 1 – P(A | \(\overline B \)) = 1 – 0,5 = 0,5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.