Câu hỏi:

19/09/2024 3,772

Cho hai biến cố A và B thỏa mãn P(A) = P(B)  = 0,8.

Chứng minh rằng P(A | B) ≥ 0,75.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì 0 ≤ P(A∪ B) ≤ 1 nên ta có:

P(AB) = P(A) + P(B) – P(A ∪ B) = 1,6 – P(A ∪ B) ≥ 0,6.

Theo công thức tính xác suất có điều kiện, ta có:

P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}} \ge \frac{{0,6}}{{0,8}} = 0,75.\)

Vậy P(A | B) ≥ 0,75.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì \(\overline A B\) và AB là hai biến cố xung khắc và \(\overline A B\) AB = B nên theo tính chất của xác suất, ta có P(B) = P(\(\overline A B\)) + P(AB) = 0,2 + 0,3 = 0,5.

Ta có: P(\(\overline B \)) = 1 – P(B) = 1 – 0,5 = 0,5.

Theo công thức tinh xác suất có điều kiện, ta có:

P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,3}}{{0,5}} = 0,6\); P(A | \(\overline B \)) = \(\frac{{P\left( {A\overline B } \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,4}}{{0,5}} = 0,8\).

Ta có: P(\(\overline A \) | B) = 1 – P(A | B) = 1 – 0,6 = 0,4.

           P(\(\overline A \) | \(\overline B \)) = 1 – P(A | \(\overline B \)) = 1 – 0,8 = 0,2.

Lời giải

Theo quy tắc cộng xác suất, ta có P(AB) = P(A) + P(B) – P(AB).

Do đó, P(AB) = P(A) + P(B) – P(AB) = 0,4 + 0,8 – 0,9 = 0,3.

Theo công thức tính xác suất có điều kiện, ta có:

P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,3}}{{0,8}}\) = 0,375.

Vì \(A\overline B \) và AB là hai biến cố xung khắc và \(A\overline B \) AB = A nên theo tính chất của xác suất, ta có P(\(A\overline B \)) = P(A) – P(AB) = 0,4 – 0,3 = 0,1.

Ta có: P(\(\overline B \)) = 1 – P(B) = 1 – 0,8 = 0,2.

Theo công thức tính xác suất có điều kiện, ta có: P(A | \(\overline B \)) = \(\frac{{P\left( {\overline A |B} \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,1}}{{0,2}} = 0,5.\)

Ta có: P(\(\overline A \) | B) = 1 – P(A | B) = 1 – 0,375 = 0,625.

           P(\(\overline A \) | \(\overline B \)) = 1 – P(A | \(\overline B \)) = 1 – 0,5 = 0,5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay