Câu hỏi:

23/09/2024 357 Lưu

Cho cấp số cộng \(\left( {{u_n}} \right),{S_n} = {u_1} + {u_2} + {u_3} + \ldots + {u_n}.\) Khẳng định nào sau đây là đúng? 

A. \({{\rm{S}}_{\rm{n}}} = \frac{{{{\rm{u}}_1} + {{\rm{u}}_{\rm{n}}}}}{2}.\) 
B. \({{\rm{S}}_{\rm{n}}} = \frac{{\left( {{{\rm{u}}_1} + {{\rm{u}}_{\rm{n}}}} \right) \cdot {\rm{n}}}}{2}.\) 
C. \({S_n} = \left( {{u_1} + {u_n}} \right) \cdot n.\) 
D. \({{\rm{S}}_{\rm{n}}} = {{\rm{u}}_1} + {{\rm{u}}_{\rm{n}}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \( - \frac{2}{5}; - \frac{1}{5};0;\frac{1}{5};\frac{2}{5};\frac{3}{5};\frac{4}{5}; \ldots \)
B. \(4\sqrt 3 ;2\sqrt 3 ;0; - 2\sqrt 3 ; \ldots \) 
C. \(1;2;3;4;5; \ldots \)
D. \(5;10;15;20;30; \ldots \)

Lời giải

Chọn đáp án D

Câu 2

A. \({u_{n + 1}} = {u_1} + nd\left( {n \in {\mathbb{N}^*}} \right).\) 
B. \({{\rm{u}}_{{\rm{n}} + 1}} = {{\rm{u}}_1} + ({\rm{n}} - 1){\rm{d}}\left( {{\rm{n}} \in {\mathbb{N}^*}} \right).\) 
C. \({{\rm{u}}_{{\rm{n}} + 1}} = {{\rm{u}}_1}.\) \({{\rm{d}}^{\rm{n}}}\left( {{\rm{n}} \in {\mathbb{N}^*}} \right).\) 
D. \({u_{n + 1}} = {u_1} \cdot {d^{n - 1}}\left( {n \in {\mathbb{N}^*}} \right).\)

Lời giải

Chọn đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 1 ; 4 ; 9 ; 16 ; 25;...
B. 1 ; 4 ; 7 ; 10 ; 13;...
C. 1 ; 2 ; 4 ; 6 ; 8;... 
D. 1 ; 2 ; 4 ; 8 ; 16;...

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({{\rm{u}}_{16}} = - 27.\) 
B. \({{\rm{u}}_{10}} = - 16.\) 
C. \({{\rm{u}}_{20}} = 31.\) 
D. \({{\rm{u}}_{30}} = 45.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP