Câu hỏi:

24/09/2024 8,426

Hoạ sĩ thiết kế một micro có dạng khối tròn xoay, mặt cắt đứng chứa trục của khối tròn xoay có dạng như hình sau, trong đó \({\rm{OA}} = {\rm{OB}} = {\rm{OI}} = 2\;{\rm{cm}}\), \({\rm{MC}} = {\rm{MD}} = 1\;{\rm{cm}}\), đường thẳng OM là đường trung trực của đoạn thẳng CD, \({\rm{OM}} = 20\;{\rm{cm}},\widehat {{\rm{AOB}}} = {90^o }.\) Thể tích của micro này là bao nhiêu \({\rm{c}}{{\rm{m}}^3}\) ? (Làm tròn kết quả đến hàng đơn vị)

Hoạ sĩ thiết kế một micro có dạng khối tròn xoay, mặt cắt đứng chứa trục của khối tròn xoay có dạng như hình sau, trong đó (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp số: 117.

Đặt hệ trục Oxy như hình vẽ, đơn vị của mỗi trục là 1 cm. Gọi \({\rm{y}} = {\rm{f}}({\rm{x}})\) là đồ thị bao gồm cung nhỏ KA và đoạn thẳng AC, trong đó \({\rm{A}}(\sqrt 2 ;\sqrt 2 ).\)

\(V = \pi \int { - {2^{20}}} {(f(x))^2}dx = \pi \int_{ - 2}^{\sqrt 2 } {(f(} x){)^2}dx + \pi \int_{\sqrt 2 }^{20} {(f(} x){)^2}dx\)

Hoạ sĩ thiết kế một micro có dạng khối tròn xoay, mặt cắt đứng chứa trục của khối tròn xoay có dạng như hình sau, trong đó (ảnh 2)

\({\rm{A}}(\sqrt 2 ;\sqrt 2 ),{\rm{C}}(20;1)\) nên phương trình đường thẳng AC là

\(\frac{{x - 20}}{{\sqrt 2 - 20}} = \frac{{y - 1}}{{\sqrt 2 - 1}} \Leftrightarrow y - 1 = (\sqrt 2 - 1)\frac{{x - 20}}{{\sqrt 2 - 20}} \Leftrightarrow y = \frac{{(1 - \sqrt 2 )x + 19\sqrt 2 }}{{20 - \sqrt 2 }}.\)

Phương trình đường tròn là \({{\rm{x}}^2} + {{\rm{y}}^2} = 4\), hàm số có đồ thị cung nhỏ KA là \(y = \sqrt {4 - {x^2}} ,x \in [ - 2;\sqrt 2 ].\)

\({\rm{V}} = \pi \int_{ - 2}^{\sqrt 2 } {{{\left( {\sqrt {4 - {{\rm{x}}^2}} } \right)}^2}} {\rm{dx}} + \pi \int_{\sqrt 2 }^{20} {{{\left[ {\frac{{(1 - \sqrt 2 ){\rm{x}} + 19\sqrt 2 }}{{20 - \sqrt 2 }}} \right]}^2}} {\rm{dx}}\)

\( = \pi \int_{ - 2}^{\sqrt 2 } {\left( {4 - {{\rm{x}}^2}} \right)} {\rm{dx}} + \pi \int_{\sqrt 2 }^{20} {{{\left[ {\frac{{(1 - \sqrt 2 ){\rm{x}} + 19\sqrt 2 }}{{20 - \sqrt 2 }}} \right]}^2}} {\rm{dx}} \approx 117\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Nếu các biến cố \({\rm{A}},{\rm{B}}\) thoả mãn \({\rm{P}}({\rm{A}}) > 0,{\rm{P}}({\rm{B}}) > 0\) thì biểu thức \({\rm{P}}({\rm{B}}\mid {\rm{A}})\) bằng 

Lời giải

Chọn đáp án A

Lời giải

Đáp số: \({\bf{0}},{\bf{13}}.\)

Chọn ngẫu nhiên một email. Gọi A là biến cố email đó là thư quảng cáo và B là biến cố E -mail Filter chuyển email đó vào thư mục Spam.

Ta có \({\rm{P}}({\rm{B}}\mid {\rm{A}}) = 0,9;{\rm{P}}({\rm{B}}\mid \overline {\rm{A}} ) = 0,05;{\rm{P}}({\rm{A}}\mid {\rm{B}}) = 0,72.\)

Áp dụng công thức Bayes, ta có: \({\rm{P}}({\rm{A}}\mid {\rm{B}}) = \frac{{{\rm{P}}({\rm{B}}\mid {\rm{A}}){\rm{P}}({\rm{A}})}}{{{\rm{P}}({\rm{B}}\mid {\rm{A}}){\rm{P}}({\rm{A}}) + {\rm{P}}({\rm{B}}\mid \overline {\rm{A}} ){\rm{P}}(\overline {\rm{A}} )}}.\)

Đặt \(P(A) = p \in [0;1]\), ta có:

\(0,72 = \frac{{0,9p}}{{0,9p + 0,05(1 - {\rm{p}})}} \Leftrightarrow 0,8(0,85{\rm{p}} + 0,05) = {\rm{p}}.\)

Giải phương trình trên ta được \({\rm{p}} = 0,125.\)

Câu 4

Cho hình hộp \(ABCD \cdot {A^\prime }{B^\prime }{C^\prime }{D^\prime }.\) Cặp vectơ nào sau đây là cặp vectơ chỉ phương của mặt phẳng \(({\rm{ABCD}})\) ?

Cho hình hộp \(ABCD \cdot {A^\prime }{B^\prime }{C^\prime }{D^\prime }.\) Cặp vectơ nào sau đây là cặp vectơ chỉ phương của mặt phẳng \(({\rm{ABCD}})\) ? (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình tham số của đường thẳng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay