Câu hỏi:

24/09/2024 8,886

Hoạ sĩ thiết kế một micro có dạng khối tròn xoay, mặt cắt đứng chứa trục của khối tròn xoay có dạng như hình sau, trong đó \({\rm{OA}} = {\rm{OB}} = {\rm{OI}} = 2\;{\rm{cm}}\), \({\rm{MC}} = {\rm{MD}} = 1\;{\rm{cm}}\), đường thẳng OM là đường trung trực của đoạn thẳng CD, \({\rm{OM}} = 20\;{\rm{cm}},\widehat {{\rm{AOB}}} = {90^o }.\) Thể tích của micro này là bao nhiêu \({\rm{c}}{{\rm{m}}^3}\) ? (Làm tròn kết quả đến hàng đơn vị)

Hoạ sĩ thiết kế một micro có dạng khối tròn xoay, mặt cắt đứng chứa trục của khối tròn xoay có dạng như hình sau, trong đó (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp số: 117.

Đặt hệ trục Oxy như hình vẽ, đơn vị của mỗi trục là 1 cm. Gọi \({\rm{y}} = {\rm{f}}({\rm{x}})\) là đồ thị bao gồm cung nhỏ KA và đoạn thẳng AC, trong đó \({\rm{A}}(\sqrt 2 ;\sqrt 2 ).\)

\(V = \pi \int { - {2^{20}}} {(f(x))^2}dx = \pi \int_{ - 2}^{\sqrt 2 } {(f(} x){)^2}dx + \pi \int_{\sqrt 2 }^{20} {(f(} x){)^2}dx\)

Hoạ sĩ thiết kế một micro có dạng khối tròn xoay, mặt cắt đứng chứa trục của khối tròn xoay có dạng như hình sau, trong đó (ảnh 2)

\({\rm{A}}(\sqrt 2 ;\sqrt 2 ),{\rm{C}}(20;1)\) nên phương trình đường thẳng AC là

\(\frac{{x - 20}}{{\sqrt 2 - 20}} = \frac{{y - 1}}{{\sqrt 2 - 1}} \Leftrightarrow y - 1 = (\sqrt 2 - 1)\frac{{x - 20}}{{\sqrt 2 - 20}} \Leftrightarrow y = \frac{{(1 - \sqrt 2 )x + 19\sqrt 2 }}{{20 - \sqrt 2 }}.\)

Phương trình đường tròn là \({{\rm{x}}^2} + {{\rm{y}}^2} = 4\), hàm số có đồ thị cung nhỏ KA là \(y = \sqrt {4 - {x^2}} ,x \in [ - 2;\sqrt 2 ].\)

\({\rm{V}} = \pi \int_{ - 2}^{\sqrt 2 } {{{\left( {\sqrt {4 - {{\rm{x}}^2}} } \right)}^2}} {\rm{dx}} + \pi \int_{\sqrt 2 }^{20} {{{\left[ {\frac{{(1 - \sqrt 2 ){\rm{x}} + 19\sqrt 2 }}{{20 - \sqrt 2 }}} \right]}^2}} {\rm{dx}}\)

\( = \pi \int_{ - 2}^{\sqrt 2 } {\left( {4 - {{\rm{x}}^2}} \right)} {\rm{dx}} + \pi \int_{\sqrt 2 }^{20} {{{\left[ {\frac{{(1 - \sqrt 2 ){\rm{x}} + 19\sqrt 2 }}{{20 - \sqrt 2 }}} \right]}^2}} {\rm{dx}} \approx 117\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn đáp án A

Lời giải

Đáp số: \({\bf{0}},{\bf{13}}.\)

Chọn ngẫu nhiên một email. Gọi A là biến cố email đó là thư quảng cáo và B là biến cố E -mail Filter chuyển email đó vào thư mục Spam.

Ta có \({\rm{P}}({\rm{B}}\mid {\rm{A}}) = 0,9;{\rm{P}}({\rm{B}}\mid \overline {\rm{A}} ) = 0,05;{\rm{P}}({\rm{A}}\mid {\rm{B}}) = 0,72.\)

Áp dụng công thức Bayes, ta có: \({\rm{P}}({\rm{A}}\mid {\rm{B}}) = \frac{{{\rm{P}}({\rm{B}}\mid {\rm{A}}){\rm{P}}({\rm{A}})}}{{{\rm{P}}({\rm{B}}\mid {\rm{A}}){\rm{P}}({\rm{A}}) + {\rm{P}}({\rm{B}}\mid \overline {\rm{A}} ){\rm{P}}(\overline {\rm{A}} )}}.\)

Đặt \(P(A) = p \in [0;1]\), ta có:

\(0,72 = \frac{{0,9p}}{{0,9p + 0,05(1 - {\rm{p}})}} \Leftrightarrow 0,8(0,85{\rm{p}} + 0,05) = {\rm{p}}.\)

Giải phương trình trên ta được \({\rm{p}} = 0,125.\)

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP