Câu hỏi:

24/09/2024 4,622

Bác Hùng có kế hoạch dùng hết \(20\;{{\rm{m}}^2}\) kính để làm một bể cá có dạng hình hộp chữ nhật không nắp, chiều dài gấp ba chiều rộng (các mối ghép không đáng kể). Bể cá có thể tích lớn nhất bằng bao nhiêu \({{\rm{m}}^3}\) (làm tròn kết quả đến hàng phần mười)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp số: 7,5.

Giả sử hình hộp chữ nhật có chiều rộng của đáy là x, chiều dài của đáy là 3 x, chiều cao là y (đơn vị \({\rm{m}},{\rm{x}} > 0,{\rm{y}} > 0\) ).

Ta có: \(3x \cdot x + 2 \cdot x \cdot y + 2 \cdot 3x \cdot y = 20\), tức là \(3{x^2} + 8xy = 20,y = \frac{{20 - 3{x^2}}}{{8x}}.\)

Thể tích của bể cá là \(V = 3{\rm{x}} \cdot {\rm{x}} \cdot {\rm{y}} = 3{\rm{x}} \cdot {\rm{x}} \cdot \frac{{20 - 3{{\rm{x}}^2}}}{{8{\rm{x}}}} = \frac{3}{8}\left( { - 3{{\rm{x}}^3} + 20{\rm{x}}} \right).\)

\(f(x) = \frac{3}{8}\left( { - 3{x^3} + 20x} \right),0 < x < \sqrt {\frac{{20}}{3}} .\)

\({f^\prime }(x) = \frac{3}{8}\left( { - 9{x^2} + 20} \right),{f^\prime }(x) = 0 \Leftrightarrow x = \frac{{2\sqrt 5 }}{3}.\)

Lập bảng biến thiên của hàm số trên \(\left( {0;\sqrt {\frac{{20}}{3}} } \right)\), thể tích có giá trị lớn nhất là \(\frac{3}{8}\left[ { - 3 \cdot {{\left( {\frac{{2\sqrt 5 }}{3}} \right)}^3} + 20 \cdot \left( {\frac{{2\sqrt 5 }}{3}} \right)} \right] = \frac{{10\sqrt 5 }}{3} \approx 7,5\left( {\;{{\rm{m}}^3}} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: 0,3.

Gọi 6 điểm An chọn lần lượt là \({\rm{A}},{\rm{B}},{\rm{C}},{\rm{D}},{\rm{E}},{\rm{F}}\) theo chiều kim đồng hồ. Số lựa chọn của Bình là \({\rm{C}}{6^3}.\) Gọi M là biến cố "Tam giác được Bình chọn không có điểm chung với tam giác tạo bởi 3 đỉnh còn lại trong 6 điểm được An chọn". Biến cố M xảy ra khi Bình chọn 3 đỉnh liên tiếp của lục giác ABCDEF. Số cách chọn như vậy là 6. Do đó \({\rm{P}}({\rm{M}}) = \frac{{6 \cdot {\rm{C}}{{2025}^6}}}{{{\rm{C}}{6^3} \cdot {\rm{C}}{{2025}^6}}}.\)

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP