Câu hỏi:

02/10/2024 943

1. Giải các phương trình sau:

a) \(\left( {2 - x} \right)\left( {x + 3} \right) = 0.\) b) \(\frac{{2x - 5}}{{x + 4}} + \frac{x}{{4 - x}} = \frac{{17x - 56}}{{16 - {x^2}}}.\)

2. Giải các bất phương trình sau:

a) \[3 \le \frac{{2x + 3}}{5}\].                               b) \(3\left( {x - 2} \right) - 5 \ge 3\left( {2x - 1} \right).\)                                              c) \[\frac{{2x + 4}}{3} - \frac{{4x - 7}}{{18}} > \frac{{2x - 5}}{9} - \frac{{2x - 1}}{{15}}.\]

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1. a) \(\left( {2 - x} \right)\left( {x + 3} \right) = 0\)

\(2 - x = 0\) hoặc \(x + 3 = 0\)

\(x = 2\) hoặc \(x = - 3.\)

Vậy phương trình đã cho có nghiệm là \(x = 2;\,\,x = - 3.\)

 

1. b) Điều kiện xác định: \(x \ne 4,\,\,x \ne - 4.\)

\(\frac{{2x - 5}}{{x + 4}} + \frac{x}{{4 - x}} = \frac{{17x - 56}}{{16 - {x^2}}}\)

\(\frac{{2x - 5}}{{x + 4}} - \frac{x}{{x - 4}} = \frac{{ - 17x + 56}}{{{x^2} - 16}}\)

\(\frac{{\left( {2x - 5} \right)\left( {x - 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} - \frac{{x\left( {x + 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = \frac{{ - 17x + 56}}{{\left( {x - 4} \right)\left( {x + 4} \right)}}\)

\(\left( {2x - 5} \right)\left( {x - 4} \right) - x\left( {x + 4} \right) = - 17x + 56\)

\(2{x^2} - 8x - 5x + 20 - {x^2} - 4x = - 17x + 56\)

\({x^2} = 36\)

\(x = 6\) (thõa mãn) hoặc \(x = - 6\) (thõa mãn).

Vậy nghiệm của phương trình đã cho là \(x = 6;\,\,x = - 6.\)

2. a) \(3 \le \frac{{2x + 3}}{5}\)

 \(3 \cdot 5 \le \frac{{2x + 3}}{5} \cdot 5\)

 \(15 \le 2x + 3\)

 \( - 2x \le 3 - 15\)

 \( - 2x \le - 12\)

     \(x \ge 6\).

Vậy nghiệm của bất phương trình đã cho là \(x \ge 6.\)

2. b) \(3\left( {x - 2} \right) - 5 \ge 3\left( {2x - 1} \right)\)

 \(3x - 6 - 5 \ge 6x - 3\)

 \(3x - 6x \ge - 3 + 5 + 6\)

 \( - 3x \ge 8\)

    \(x \le \frac{{ - 8}}{3}\).

Vậy nghiệm của bất phương trình đã cho là \(x \le \frac{{ - 8}}{3}\).

2. c) \[\frac{{2x + 4}}{3} - \frac{{4x - 7}}{{18}} > \frac{{2x - 5}}{9} - \frac{{2x - 1}}{{15}}\]

\[\frac{{30\left( {2x + 4} \right)}}{{90}} - \frac{{5\left( {4x - 7} \right)}}{{90}} > \frac{{10\left( {2x - 5} \right)}}{{90}} - \frac{{6\left( {2x - 1} \right)}}{{90}}\]

\[30\left( {2x + 4} \right) - 5\left( {4x - 7} \right) > 10\left( {2x - 5} \right) - 6\left( {2x - 1} \right)\]

\[60x + 120 - 20x + 35 > 20x - 50 - 12x + 6\]

\[60x - 20x - 20x + 12x > - 50 + 6 - 120 - 35\]

\[\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,32x > - 199\]

\[\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x > \frac{{ - 199}}{{32}}\]

Vậy nghiệm của bất phương trình đã cho là \[x > \frac{{ - 199}}{{32}}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = 10\), \(AC = 6\). Tỉ số lượng giác \(\tan C\) có kết quả gần nhất với giá trị nào dưới đây? 

Xem đáp án » 02/10/2024 3,106

Câu 2:

Nếu \(a,\,\,b,\,\,c\) là ba số mà \(a < b\) và \(ac > bc\) thì \(c\) là 

Xem đáp án » 02/10/2024 1,704

Câu 3:

Cho tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH\) và \(\widehat B = \alpha .\) Tỉ số \(\frac{{HA}}{{BA}}\) bằng: 

Xem đáp án » 02/10/2024 1,553

Câu 4:

Cho góc \(\alpha \) thỏa mãn \(0^\circ < \alpha < 90^\circ \). Biết \(\tan \alpha = \frac{4}{3}\). Giá trị của \(\cot \left( {90^\circ - \alpha } \right)\) bằng 

Xem đáp án » 02/10/2024 1,476

Câu 5:

Rút gọn các biểu thức sau:

a) \(A = \cos 40^\circ  - \sin 50^\circ  + \tan 20^\circ \cot 20^\circ .\)      b) \(B = \frac{{\sin 10^\circ }}{{\cos 80^\circ }} - \frac{{\cos 20^\circ }}{{\sin 70^\circ }} + \frac{{\tan 15^\circ }}{{\cot 75^\circ }}.\)

Xem đáp án » 02/10/2024 1,455

Câu 6:

Cho các số thực dương \(x,\,\,y,\,\,z\) thỏa mãn \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 4.\) Chứng bất đẳng thức sau:

\(\frac{1}{{2x + y + z}} + \frac{1}{{x + 2y + z}} + \frac{1}{{x + y + 2z}} \le 1.\)

Xem đáp án » 02/10/2024 1,421

Câu 7:

Lúc 6 giờ sáng, bạn An đi từ nhà (điểm \[A)\] đến trường (điểm \[B)\] phải leo lên và xuống một con dốc đỉnh \(C\) được mô tả như hình vẽ dưới. Cho biết đoạn \[AB\] dài 762 m, \(\widehat {A\,\,} = 4^\circ ,\,\,\widehat {B\,} = 6^\circ .\)

Lúc 6 giờ sáng, bạn An đi từ nhà (điểm \[A)\] đến trường (điểm \[B)\] phải leo lên và xuống một con dốc đỉnh \(C\) được mô tả như hình vẽ dưới. Cho biết đoạn \[AB\] dài 762 m, \(\widehat {A\,\,} = 4^\circ ,\,\,\widehat {B\,} = 6^\circ .\)  a) Tính chiều cao con dốc (làm tròn kết quả đến hàng đơn vị của mét).  b) Hỏi bạn An đến trường lúc mấy giờ (làm tròn kết quả đến phút)? Biết rằng tốc độ lên dốc là 4 km/h và tốc độ xuống dốc là 19 km/h. (ảnh 1)

a) Tính chiều cao con dốc (làm tròn kết quả đến hàng đơn vị của mét).

b) Hỏi bạn An đến trường lúc mấy giờ (làm tròn kết quả đến phút)? Biết rằng tốc độ lên dốc là 4 km/h và tốc độ xuống dốc là 19 km/h.

Xem đáp án » 02/10/2024 1,137

Bình luận


Bình luận