1. Giải các phương trình sau:
a) \(\left( {2 - x} \right)\left( {x + 3} \right) = 0.\) b) \(\frac{{2x - 5}}{{x + 4}} + \frac{x}{{4 - x}} = \frac{{17x - 56}}{{16 - {x^2}}}.\)
2. Giải các bất phương trình sau:
a) \[3 \le \frac{{2x + 3}}{5}\]. b) \(3\left( {x - 2} \right) - 5 \ge 3\left( {2x - 1} \right).\) c) \[\frac{{2x + 4}}{3} - \frac{{4x - 7}}{{18}} > \frac{{2x - 5}}{9} - \frac{{2x - 1}}{{15}}.\]
1. Giải các phương trình sau:
a) \(\left( {2 - x} \right)\left( {x + 3} \right) = 0.\) b) \(\frac{{2x - 5}}{{x + 4}} + \frac{x}{{4 - x}} = \frac{{17x - 56}}{{16 - {x^2}}}.\)
2. Giải các bất phương trình sau:
a) \[3 \le \frac{{2x + 3}}{5}\]. b) \(3\left( {x - 2} \right) - 5 \ge 3\left( {2x - 1} \right).\) c) \[\frac{{2x + 4}}{3} - \frac{{4x - 7}}{{18}} > \frac{{2x - 5}}{9} - \frac{{2x - 1}}{{15}}.\]
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 9 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
|
1. a) \(\left( {2 - x} \right)\left( {x + 3} \right) = 0\) \(2 - x = 0\) hoặc \(x + 3 = 0\) \(x = 2\) hoặc \(x = - 3.\) Vậy phương trình đã cho có nghiệm là \(x = 2;\,\,x = - 3.\)
|
1. b) Điều kiện xác định: \(x \ne 4,\,\,x \ne - 4.\) \(\frac{{2x - 5}}{{x + 4}} + \frac{x}{{4 - x}} = \frac{{17x - 56}}{{16 - {x^2}}}\) \(\frac{{2x - 5}}{{x + 4}} - \frac{x}{{x - 4}} = \frac{{ - 17x + 56}}{{{x^2} - 16}}\) \(\frac{{\left( {2x - 5} \right)\left( {x - 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} - \frac{{x\left( {x + 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = \frac{{ - 17x + 56}}{{\left( {x - 4} \right)\left( {x + 4} \right)}}\) \(\left( {2x - 5} \right)\left( {x - 4} \right) - x\left( {x + 4} \right) = - 17x + 56\) \(2{x^2} - 8x - 5x + 20 - {x^2} - 4x = - 17x + 56\) \({x^2} = 36\) \(x = 6\) (thõa mãn) hoặc \(x = - 6\) (thõa mãn). Vậy nghiệm của phương trình đã cho là \(x = 6;\,\,x = - 6.\) |
|
2. a) \(3 \le \frac{{2x + 3}}{5}\) \(3 \cdot 5 \le \frac{{2x + 3}}{5} \cdot 5\) \(15 \le 2x + 3\) \( - 2x \le 3 - 15\) \( - 2x \le - 12\) \(x \ge 6\). Vậy nghiệm của bất phương trình đã cho là \(x \ge 6.\) 2. b) \(3\left( {x - 2} \right) - 5 \ge 3\left( {2x - 1} \right)\) \(3x - 6 - 5 \ge 6x - 3\) \(3x - 6x \ge - 3 + 5 + 6\) \( - 3x \ge 8\) \(x \le \frac{{ - 8}}{3}\). Vậy nghiệm của bất phương trình đã cho là \(x \le \frac{{ - 8}}{3}\). |
2. c) \[\frac{{2x + 4}}{3} - \frac{{4x - 7}}{{18}} > \frac{{2x - 5}}{9} - \frac{{2x - 1}}{{15}}\] \[\frac{{30\left( {2x + 4} \right)}}{{90}} - \frac{{5\left( {4x - 7} \right)}}{{90}} > \frac{{10\left( {2x - 5} \right)}}{{90}} - \frac{{6\left( {2x - 1} \right)}}{{90}}\] \[30\left( {2x + 4} \right) - 5\left( {4x - 7} \right) > 10\left( {2x - 5} \right) - 6\left( {2x - 1} \right)\] \[60x + 120 - 20x + 35 > 20x - 50 - 12x + 6\] \[60x - 20x - 20x + 12x > - 50 + 6 - 120 - 35\] \[\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,32x > - 199\] \[\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x > \frac{{ - 199}}{{32}}\] Vậy nghiệm của bất phương trình đã cho là \[x > \frac{{ - 199}}{{32}}.\] |
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải

Lời giải
a) Kẻ \(CH \bot AB,\,\,H \in AB.\) Khi đó \(CH\) là chiều cao của con dốc.
![Lúc 6 giờ sáng, bạn An đi từ nhà (điểm \[A)\] đến trường (điểm \[B)\] phải leo lên và xuống một con dốc đỉnh \(C\) được mô tả như hình vẽ dưới. Cho biết đoạn \[AB\] dài 762 m, \(\widehat {A\,\,} = 4^\circ ,\,\,\widehat {B\,} = 6^\circ .\) a) Tính chiều cao con dốc (làm tròn kết quả đến hàng đơn vị của mét). b) Hỏi bạn An đến trường lúc mấy giờ (làm tròn kết quả đến phút)? Biết rằng tốc độ lên dốc là 4 km/h và tốc độ xuống dốc là 19 km/h. (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2024/10/blobid3-1727877165.png)
⦁ Xét \(\Delta ACH\) vuông tại \[H,\] ta có: \({\rm{tan}}\widehat {CAH} = \frac{{CH}}{{AH}}\)
Suy ra \(AH = \frac{{CH}}{{{\rm{tan}}\widehat {CAH}}} = \frac{{CH}}{{{\rm{tan6}}^\circ }}\,\,({\rm{m}}).\) (1)
⦁ Xét \(\Delta BCH\) vuông tại \[H,\] ta có: \({\rm{tan}}\widehat {CBH} = \frac{{CH}}{{BH}}\)
Suy ra \(BH = \frac{{CH}}{{{\rm{tan}}\widehat {CBH}}} = \frac{{CH}}{{{\rm{tan4}}^\circ }}\,\,({\rm{m}}).\) (2)
⦁ Từ (1) và (2) ta có: \(AH + BH = \frac{{CH}}{{{\rm{tan6}}^\circ }} + \frac{{CH}}{{{\rm{tan4}}^\circ }}\) hay \(AB = CH \cdot \left( {\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}} \right)\)
Do đó \(762 = CH \cdot \left( {\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}} \right)\)
Suy ra \(CH = \frac{{762}}{{\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}}} \approx 32{\rm{\;(m)}}{\rm{.}}\)
Vậy chiều cao của con dốc là 32 m.
b) ⦁ Xét \(\Delta ACH\) vuông tại \[H,\] ta có: \({\rm{sin}}\widehat {CAH} = \frac{{CH}}{{AC}}\)
Suy ra \(AC = \frac{{CH}}{{{\rm{sin}}\widehat {CAH}}} \approx \frac{{{\rm{32}}}}{{{\rm{sin6}}^\circ }}{\rm{\;(m)}} = \frac{4}{{125{\rm{sin6}}^\circ }}{\rm{\;(km)}}{\rm{.}}\) (3)
Xét \(\Delta BCH\) vuông tại \[H,\] ta có: \({\rm{sin}}\widehat {CBH} = \frac{{CH}}{{CB}}\)
Suy ra \(CB = \frac{{CH}}{{{\rm{sin}}\widehat {CBH}}} \approx \frac{{{\rm{32}}}}{{{\rm{sin4}}^\circ }}{\rm{\;(m)}} = \frac{4}{{125{\rm{sin4}}^\circ }}{\rm{\;(km)}}{\rm{.}}\) (4)
⦁ Thời gian lên dốc \[AC\] là: \[{t_{AC}} = \frac{{{S_{AC}}}}{{{v_{ld}}}} = \frac{{AC}}{{{v_{ld}}}} \approx \frac{4}{{125{\rm{sin6}}^\circ }}:4 = \frac{1}{{125{\rm{sin6}}^\circ }}\] (giờ).
Thời gian xuống dốc \(CB\) là: \[{t_{CB}} = \frac{{{S_{CB}}}}{{{v_{xd}}}} = \frac{{CB}}{{{v_{xd}}}} \approx \frac{4}{{125{\rm{sin4}}^\circ }}:19 = \frac{4}{{{\rm{2}}\,\,{\rm{375sin4}}^\circ }}\] (giờ).
Thời gian đi từ \(A\) đến \(B\) là:
\({t_{AB}} = {t_{AC}} + {t_{CB}} \approx \frac{1}{{125\sin 6^\circ }} + \frac{4}{{{\rm{2}}\,\,{\rm{375sin4}}^\circ }} \approx 0,1007\) (giờ) ≈ 6 phút.
Vậy bạn An đến trường lúc 6 giờ + 6 phút = 6 giờ 6 phút.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Lúc 6 giờ sáng, bạn An đi từ nhà (điểm \[A)\] đến trường (điểm \[B)\] phải leo lên và xuống một con dốc đỉnh \(C\) được mô tả như hình vẽ dưới. Cho biết đoạn \[AB\] dài 762 m, \(\widehat {A\,\,} = 4^\circ ,\,\,\widehat {B\,} = 6^\circ .\) a) Tính chiều cao con dốc (làm tròn kết quả đến hàng đơn vị của mét). b) Hỏi bạn An đến trường lúc mấy giờ (làm tròn kết quả đến phút)? Biết rằng tốc độ lên dốc là 4 km/h và tốc độ xuống dốc là 19 km/h. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/10/blobid5-1727877176.png)