Câu hỏi:
03/10/2024 2,873
1. Cho tam giác \[ABC\] vuông tại \(A\) có \(AB = 6\,\,{\rm{cm}}\) và \(\cos B = \frac{3}{5}.\) Tính độ dài các cạnh \(BC,\,\,AC\) và số đo góc \(C\) (làm tròn kết quả số đo góc đến phút).
2. Tính chiều cao của một ngọn núi (kết quả làm tròn đến hàng đơn vị), biết tại hai điểm \(A,\,\,B\) cách nhau \[500{\rm{\;m,}}\] người ta nhìn thấy đỉnh núi với góc nâng lần lượt là \(34^\circ \) và \(38^\circ \) (hình vẽ).
1. Cho tam giác \[ABC\] vuông tại \(A\) có \(AB = 6\,\,{\rm{cm}}\) và \(\cos B = \frac{3}{5}.\) Tính độ dài các cạnh \(BC,\,\,AC\) và số đo góc \(C\) (làm tròn kết quả số đo góc đến phút).
![Cho tam giác \[ABC\] vuông tại \(A\) có \(AB = 6\,\,{\rm{cm}}\) và \(\cos B = \frac{3}{5}.\) Tính độ dài các cạnh \(BC,\,\,AC\) và số đo góc \(C\) (làm tròn kết quả số đo góc đến phút). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/10/blobid4-1727919496.png)
Quảng cáo
Trả lời:
![Cho tam giác \[ABC\] vuông tại \(A\) có \(AB = 6\,\,{\rm{cm}}\) và \(\cos B = \frac{3}{5}.\) Tính độ dài các cạnh \(BC,\,\,AC\) và số đo góc \(C\) (làm tròn kết quả số đo góc đến phút). (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2024/10/blobid3-1727919474.png)
⦁ \(AB = BC \cdot \cos B\) suy ra \[BC = \frac{{AB}}{{\cos B}} = \frac{6}{{\frac{3}{5}}} = 10{\rm{\;(cm)}}{\rm{.}}\]
⦁ \(B{C^2} = A{B^2} + A{C^2}\)
Suy ra \(A{C^2} = B{C^2} - A{B^2} = {10^2} - {6^2} = 64,\) nên \[AC = 8{\rm{\;cm}}{\rm{.}}\]
⦁ \(\widehat {B\,} + \widehat {C\,} = 90^\circ \) suy ra \(\sin C = \cos B = \frac{3}{5}\), từ đó ta tìm được \(\widehat {C\,} \approx 36^\circ 52'\).
2. Đặt: \(BC = x\,\,\left( {\rm{m}} \right);\) \(AC = AB + BC = 500 + x\,\,\left( {\rm{m}} \right)\).
Xét \(\Delta ACD\) vuông tại \(C,\) ta có: \[CD = AC \cdot {\rm{tan}}\widehat {CAD} = \left( {500 + x} \right) \cdot {\rm{tan}}34^\circ .\]
Xét \(\Delta BCD\) vuông tại \(C,\) ta có: \(CD = BC \cdot {\rm{tan}}\widehat {CBD} = x \cdot {\rm{tan}}38^\circ \).
Do đó, ta có: \(\;\left( {500 + x} \right) \cdot {\rm{tan}}34^\circ = x \cdot {\rm{tan}}38^\circ \)
\(500 \cdot {\rm{tan}}34^\circ + x \cdot {\rm{tan}}34^\circ = x \cdot {\rm{tan}}38^\circ \)
\(\;x \cdot {\rm{tan}}38^\circ - x \cdot {\rm{tan}}34^\circ = 500 \cdot {\rm{tan}}34^\circ \)
\(\;x \cdot \left( {{\rm{tan}}38^\circ - {\rm{tan}}34^\circ } \right) = 500 \cdot {\rm{tan}}34^\circ \)
\(\;x = \frac{{500 \cdot {\rm{tan}}34^\circ }}{{{\rm{tan}}38^\circ - {\rm{tan}}34^\circ }} \approx 3\,\,158,5\,\,({\rm{m)}}{\rm{.}}\)
Suy ra \(CD = x \cdot {\rm{tan}}38^\circ \approx 3\,\,158,5 \cdot {\rm{tan}}38^\circ \approx 2468\,\,({\rm{m}}).\)
Vậy ngọn núi cao khoảng \(2\,\,468\) mét.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
![Cho tam giác \(ABC\) vuông tại \(A\) có \[BC = a,\] \[AC = b,\,\,AB = c.\] Khẳng định nào sau đây là đúng? A. \[\sin B = \frac{c}{a}\]. B. \[c = \frac{b}{{\cot B}}\]. C. \[c = b \cdot \tan C\]. D. \[b = c \cdot \cos C\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/10/blobid0-1727918783.png)
Tam giác \(ABC\) vuông tại \(A\), ta có:
⦁ \[\sin B = \frac{{AC}}{{BC}} = \frac{b}{a}\];
⦁ \(AC = BC \cdot \cos C\) hay \(b = a \cdot \cos C\);
⦁ \(AB = AC \cdot \tan C\) hay \(c = b \cdot \tan C\);
⦁ \(\cot B = \frac{{AB}}{{AC}} = \frac{c}{b}\) suy ra \(b = \frac{c}{{\cot B}}\).
Vậy phương án C là khẳng định đúngLời giải
Vậy nghiệm của bất phương trình đã cho là \(x < 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.