Câu hỏi:
03/10/2024 1,259Cho tam giác \(ABC\) có đường cao\(AH.\) Gọi \(D\) và \(E\) lần lượt là chân đường vuông góc kẻ từ \(H\) đến \(AB,\,\,AC.\) Chứng minh rằng \(\frac{{{S_{\Delta ADE}}}}{{{S_{\Delta ABC}}}} = {\sin ^2}B \cdot {\sin ^2}C\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
⦁ Xét \(\Delta ABD\) vuông tại \(D\) ta có: \(\cos \widehat {DAH} = \frac{{AD}}{{AH}}.\)
Xét \(\Delta ABH\) vuông tại \(H\) ta có: \(\cos \widehat {BAH} = \frac{{AH}}{{AB}}.\)
Suy ra \(\frac{{AD}}{{AH}} = \frac{{AH}}{{AB}}\) hay \(A{H^2} = AD \cdot AB\).
Chứng minh tương tự ta cũng có: \(A{H^2} = AE \cdot AC\).
Do đó \(AD \cdot AB = AE \cdot AC\) hay \(\frac{{AE}}{{AB}} = \frac{{AD}}{{AC}}\).
Xét \(\Delta ADE\) và \(\Delta ACB\) có: \(\widehat {BAC}\) là góc chung và \(\frac{{AE}}{{AB}} = \frac{{AD}}{{AC}}\)
Do đó (c.g.c), suy ra \(\frac{{AE}}{{AB}} = \frac{{AD}}{{AC}} = \frac{{DE}}{{CB}}\) và \(\widehat {B\,} = \widehat {E\,}\).
⦁ Xét \(\Delta ABH\) vuông tại \(H\), ta có \(AH = AB \cdot \sin B\).
Suy ra \({S_{\Delta ABC}} = \frac{1}{2}BC \cdot AH = \frac{1}{2} \cdot BC \cdot BA \cdot \sin B\).
Chứng minh tương tự, ta cũng có: \({S_{\Delta ADE}} = \frac{1}{2} \cdot ED \cdot EA \cdot \sin E\)
Khi đó, \(\frac{{{S_{\Delta ADE}}}}{{{S_{\Delta ABC}}}} = \frac{{\frac{1}{2} \cdot ED \cdot EA \cdot \sin E}}{{\frac{1}{2} \cdot BC \cdot BA \cdot \sin B}} = \frac{{DE}}{{CB}} \cdot \frac{{AE}}{{AB}} \cdot \frac{{\sin E}}{{\sin E}}\) (do \(\widehat {B\,} = \widehat {E\,})\)
Suy ra \(\frac{{{S_{\Delta ADE}}}}{{{S_{\Delta ABC}}}} = {\left( {\frac{{AE}}{{AB}}} \right)^2}\) (do \(\frac{{AE}}{{AB}} = \frac{{AD}}{{AC}} = \frac{{DE}}{{CB}})\)
Do đó \(\frac{{{S_{\Delta ADE}}}}{{{S_{\Delta ABC}}}} = {\left( {\frac{{AE}}{{AH}} \cdot \frac{{AH}}{{AB}}} \right)^2}\)
Xét \(\Delta AHE\) vuông tại \(E\) ta có: \(\frac{{AE}}{{AH}} = \cos \widehat {HAC} = \sin C\) (do \(\widehat {HAC} + \widehat {C\,} = 90^\circ )\)
Xét \(\Delta ABH\) vuông tại \(H\) ta có: \(\frac{{AH}}{{AB}} = \sin B\)
Từ đó, ta có \(\frac{{{S_{\Delta ADE}}}}{{{S_{\Delta ABC}}}} = {\left( {\frac{{AE}}{{AH}} \cdot \frac{{AH}}{{AB}}} \right)^2} = {\left( {\sin C \cdot \sin B} \right)^2} = {\sin ^2}B \cdot {\sin ^2}C.\)
Vậy \(\frac{{{S_{\Delta ADE}}}}{{{S_{\Delta ABC}}}} = {\sin ^2}B \cdot {\sin ^2}C.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
1. Cho tam giác \[ABC\] vuông tại \(A\) có \(AB = 6\,\,{\rm{cm}}\) và \(\cos B = \frac{3}{5}.\) Tính độ dài các cạnh \(BC,\,\,AC\) và số đo góc \(C\) (làm tròn kết quả số đo góc đến phút).
Câu 2:
Câu 4:
Câu 5:
1. Giải các phương trình sau:
a) \(9{x^2}\left( {2x - 3} \right) = 0.\) b) \(\frac{2}{{{x^2} - 4}} - \frac{{x - 1}}{{x\left( {x - 2} \right)}} + \frac{{x - 4}}{{x\left( {x + 2} \right)}} = 0\).
2. Giải các bất phương trình sau:
a) \(8x + 2 < 7x - 1\). b) \(\frac{{15 - 6x}}{3} > 5\). c) \[\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right) < \left( {{x^2} + 1} \right)\left( {x + 2} \right) - 2{x^2} + 4\].
Câu 6:
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
21 câu Trắc nghiệm Toán 9 Bài 1: Căn bậc hai có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
về câu hỏi!