Câu hỏi:

03/10/2024 9,274

Từ một đài quan sát, một người đặt mắt tại vị trí \[B.\] Người đó nhìn thấy một chiếc ô tô ở vị trí \[C\] theo phương \[BC\] tạo với phương nằm ngang \[Bx\] một góc là \(\widehat {CBx} = 25^\circ \) với \[Bx\,{\rm{//}}\,AC.\] Khi đó, khoảng cách giữa ô tô và chân đài quan sát là \[AC = 1,221{\rm{\;km}}{\rm{.}}\] Nếu ô tô từ vị trí \[C\] tiếp tục đi về phía chân đài quan sát với tốc độ \[60\] km/h thì sau 1 phút, người đó nhìn thấy ô tô ở vị trí \[D\] với góc \(\widehat {DBx} = \alpha \) (hình vẽ).
Từ một đài quan sát, một người đặt mắt tại vị trí \[B.\] Người đó nhìn thấy một chiếc ô tô ở vị trí \[C\] theo phương \[BC\] tạo với phương nằm ngang \[Bx\] (ảnh 1)

a) Tính chiều cao của đài quan sát (làm tròn kết quả đến hàng đơn vị của mét), biết độ cao từ tầm mắt của người đó đến đỉnh đài quan sát là \[3\] m.

b) Tính số đo góc \[\alpha \] (làm tròn kết quả đến hàng đơn vị của phút).

c) Tính khoảng cách từ mắt người quan sát đến vị trí \[D\] (làm tròn kết quả đến hàng đơn vị của mét).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đổi \(1,221{\rm{\;km}} = 1\,\,221{\rm{\;m}}.\)

a) Do \[Bx\,{\rm{//}}\,AC\;\] nên \[\widehat {ACB} = \widehat {CBx}\] (so le trong).

Vì \(\Delta ABC\) vuông tại \[A\] nên \(AB = AC \cdot {\rm{tan}}\widehat {ACB} = 1\,\,221 \cdot {\rm{tan}}25^\circ  \approx 569{\rm{\;(m)}}{\rm{.}}\)

Vậy chiều cao của đài quan sát khoảng: \[3 + 569 = 572\] (m).

b) Đổi: \[60\] km/h \[ = 1{\rm{ }}000\] m/phút.

Do \[Bx\,{\rm{//}}\,AC\;\] và \[AB \bot AC\] nên ta có \(\widehat {ABx} = \widehat {BAC} = 90^\circ .\)

Quãng đường \[CD\] là: \[CD = 1{\rm{ }}000 \cdot 1 = 1{\rm{ }}000\] (m).

Do đó: \[AD = AC - CD = 1{\rm{ }}221\; - 1{\rm{ }}000 = 221\] (m).

Xét \(\Delta ABD\) vuông tại \[A\] có: \({\rm{tan}}\widehat {ABD} = \frac{{AD}}{{AB}} \approx \frac{{221}}{{569}}.\) Suy ra \(\widehat {ABD} \approx 21^\circ 14'.\)

Mà \(\widehat {DBx} + \widehat {ABD} = \widehat {ABx} = 90^\circ .\)

Suy ra \(\alpha  = \widehat {DBx} = 90^\circ  - \widehat {ABD} \approx 90^\circ  - 21^\circ 14' = 68^\circ 46'.\)

c) Vì \(\Delta ABD\) vuông tại \[A\] nên \(AB = BD \cdot {\rm{cos}}\widehat {ABD}.\)

Suy ra \(BD = \frac{{AB}}{{{\rm{cos}}\widehat {ABD}}} \approx \frac{{569}}{{{\rm{cos}}\,21^\circ 14'}} \approx 610{\rm{\;(m)}}{\rm{.}}\)

Vậy khoảng cách từ mắt người quan sát đến vị trí \[D\] khoảng \[610\] mét.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Vì số nguyên tử của \[{\rm{Ag}}\] và \({\rm{Cl}}\) ở cả hai vế của phương trình phản ứng phải bằng nhau nên ta có hệ phương trình: \(\left\{ \begin{array}{l}x = 2\\2y = 2\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}x = 2\\y = 1.\end{array} \right.\)

Vậy \(x = 2,\,\,y = 1.\) Khi đó ta hoàn thiện được phương trình phản ứng hóa học sau cân bằng như sau:

\(2{\rm{Ag}} + {\rm{C}}{{\rm{l}}_2} \to 2{\rm{AgCl}}{\rm{.}}\)

b) Để cặp số \(\left( { - 2;\,\,1} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2mx + y = m\\x - my = - 1 - 6m\end{array} \right.\) thì \(x = - 2\)\(y = 1\) phải thỏa mãn cả hai phương trình của hệ.

Thay \(x = - 2\)\(y = 1\) vào hệ phương trình đã cho, ta được \(\left\{ \begin{array}{l}2m \cdot \left( { - 2} \right) + 1 = m\\ - 2 - m \cdot 1 = - 1 - 6m\end{array} \right.\) hay \(\left\{ \begin{array}{l} - 4m + 1 = m\\ - 2 - m = - 1 - 6m\end{array} \right.\) tức là \(\left\{ \begin{array}{l}1 = 5m\\5m = 1\end{array} \right.\), suy ra \(m = \frac{1}{5}\).

Vậy để cặp số \[\left( { - 2\,;\,1} \right)\] là nghiệm của hệ phương trình đã cho thì \(m = \frac{1}{5}.\)

c) Gọi số có hai chữ số cần tìm là \(\overline {xy} {\rm{ }}\left( {x \in \mathbb{N}*,\,\,y \in \mathbb{N}*,\,\,0 < x \le 9,\,\,0 \le y \le 9} \right).\)

Nếu đổi chỗ hai chữ số của nó thì được số mới là \(\overline {yx} \).

Ta có: \(\overline {xy} = 10x + y\)\(\overline {yx} = 10y + x\).

Theo bài, nếu đổi chỗ hai chữ số của nó thì được số mới lớn hơn số đã cho là \(63\) nên ta có phương trình: \(10y + x = \left( {10x + y} \right) + 63\) hay \( - 9x + 9y = 63\) nên \(x - y = - 7.\)   (1)

Mặt khác, tổng của số đã cho và số mới tạo thành bằng \(99\) nên ta có phương trình: \(\left( {10x + y} \right) + \left( {10y + x} \right) = 99\) hay \(11x + 11y = 99\) nên \(x + y = 9.\)   (2)

Từ (1) và (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}x - y = - 7\\x + y = 9.\end{array} \right.\)

Cộng từng vế hai phương trình của hệ trên, ta được:

\(2x = 2,\) suy ra \(x = 1\) (thỏa mãn).

Thay \(x = 1\) vào phương trình \(x + y = 9,\) ta được: \(1 + y = 9,\) suy ra \(y = 8\) (thỏa mãn).

Vậy số cần tìm là \(18\).

Lời giải

a) \(A = \cos 40^\circ - \sin 50^\circ + \tan 20^\circ \cot 20^\circ \)

 \( = \cos 40^\circ - \cos 40^\circ + 1\)

 \( = 0 + 1 = 1.\)

b) \(B = \frac{{\sin 10^\circ }}{{\cos 80^\circ }} - \frac{{\cos 20^\circ }}{{\sin 70^\circ }} + \frac{{\tan 15^\circ }}{{\cot 75^\circ }}\)

 \( = \frac{{\sin 10^\circ }}{{\sin 10^\circ }} - \frac{{\cos 20^\circ }}{{\cos 20^\circ }} + \frac{{\tan 15^\circ }}{{\tan 15^\circ }}\)

 \( = 1 - 1 + 1 = 1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP