Câu hỏi:

19/08/2025 1,368 Lưu

Cho hàm số .

a) Hàm số đã cho nghịch biến trên .

b) Hàm số đã cho đạt cực đại tại .

c) Đồ thị hàm số cắt trục tung tại điểm có tọa độ là .

d) Đồ thị hàm số đã cho không đi qua gốc tọa độ.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) S,            b) S,            c) Đ,            d) Đ.

Hướng dẫn giải

Xét hàm số \(y = {e^x} - x + 3\).

– Tập xác định của hàm số là \(\mathbb{R}\).

– Ta có \(y' = {e^x} - 1\); \(y' = 0\) khi \(x = 0\).

Bảng biến thiên của hàm số như sau:

Cho hàm số y = e^x - x + 3 a) hàm số đã cho (ảnh 1)

– Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\). Do đó, ý a) sai.

– Hàm số đã cho đạt cực tiểu tại \(x = 0\) và không có cực đại. Do đó, ý b) sai.

– Với \(x = 0\), ta có \(y = {e^0} - 0 + 3 = 4\) nên đồ thị hàm số cắt trục tung tại điểm \(\left( {0;4} \right)\).

Từ đó suy ra đồ thị hàm số đã cho không đi qua gốc tọa độ.

Vậy ý c) và ý d) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ,            b) S,            c) S,             d) Đ.

Hướng dẫn giải

 Cho hình hộp ABCD.A'B'C'D' a) Các vecto bằng với vecto AD (ảnh 1)

– Vì \(ABCD.A'B'C'D'\) là hình hộp nên các mặt của hình hộp này là hình bình hành.

Do đó, \(\overrightarrow {AD} = \overrightarrow {BC} = \overrightarrow {B'C'} = \overrightarrow {A'D'} \). Vậy ý a) đúng.

– Ta có \(\overrightarrow {DB} = - \overrightarrow {BD} \)\(\overrightarrow {DB} = \overrightarrow {D'B'} = - \overrightarrow {B'D'} \).

Vậy các vectơ đối của vectơ \(\overrightarrow {DB} \)\[\overrightarrow {BD} ,\,\,\overrightarrow {B'D'} \]. Do đó ý b) sai.

– Vì \(\overrightarrow {AB} = \overrightarrow {DC} = \overrightarrow {D'C'} \) nên \(\overrightarrow {AB} + \overrightarrow {DC} = \overrightarrow {D'C'} + \overrightarrow {D'C'} = 2\overrightarrow {D'C'} \).

Vậy ý c) sai.

– Ta có \(\overrightarrow {BB'} = \overrightarrow {AA'} ,\,\,\overrightarrow {CA} = \overrightarrow {C'A'} \). Suy ra \(\overrightarrow {BB'} - \overrightarrow {CA} = \overrightarrow {AA'} - \overrightarrow {C'A'} = \overrightarrow {AA'} + \overrightarrow {A'C'} = \overrightarrow {AC'} \).

Vậy ý d) đúng.

Lời giải

Theo đề bài, ta có hình vẽ sau:

Có ba lực cùng tác động vào một cái bàn như  (ảnh 1)

Hợp lực tác động vào ba vật là \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OD} + \overrightarrow {OC} = \overrightarrow {OE} \).

Ta có \(\widehat {AOB} = \left( {\overrightarrow {OA} ,\,\overrightarrow {OB} } \right) = \left( {\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} } \right) = 110^\circ \). Suy ra \(\widehat {OAD} = 70^\circ \).

Áp dụng định lý côsin trong tam giác \(OAD\), ta có:

\(O{D^2} = O{A^2} + A{D^2} - 2OA \cdot AD \cdot \cos \widehat {OAD} = {9^2} + {4^2} - 2 \cdot 9 \cdot 4 \cdot \cos 70^\circ = 97 - 72\cos 70^\circ \).

 \(OC \bot \left( {OBDA} \right)\) nên \(OC \bot OD\). Suy ra \(ODEC\) là hình chữ nhật.

Do đó, tam giác \(OCE\) vuông tại \(C\) nên

\(O{E^2} = O{C^2} + E{C^2} = {7^2} + 97 - 72\cos 70^\circ = 146 - 72\cos 70^\circ \).

Suy ra \(OE = \sqrt {146 - 72\cos 70^\circ } \approx 11\).

Vậy độ lớn của hợp lực của ba lực đã cho bằng khoảng 11 N.

Đáp số: \(11\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP