Câu hỏi:
04/10/2024 1,299
Cho hàm số
.
a) Hàm số đã cho nghịch biến trên
.
b) Hàm số đã cho đạt cực đại tại
.
c) Đồ thị hàm số cắt trục tung tại điểm có tọa độ là
.
d) Đồ thị hàm số đã cho không đi qua gốc tọa độ.
Cho hàm số .
a) Hàm số đã cho nghịch biến trên .
b) Hàm số đã cho đạt cực đại tại .
c) Đồ thị hàm số cắt trục tung tại điểm có tọa độ là .
d) Đồ thị hàm số đã cho không đi qua gốc tọa độ.
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Chân Trời Sáng Tạo có đáp án !!
Quảng cáo
Trả lời:
a) S, b) S, c) Đ, d) Đ.
Hướng dẫn giải
Xét hàm số \(y = {e^x} - x + 3\).
– Tập xác định của hàm số là \(\mathbb{R}\).
– Ta có \(y' = {e^x} - 1\); \(y' = 0\) khi \(x = 0\).
Bảng biến thiên của hàm số như sau:

– Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\). Do đó, ý a) sai.
– Hàm số đã cho đạt cực tiểu tại \(x = 0\) và không có cực đại. Do đó, ý b) sai.
– Với \(x = 0\), ta có \(y = {e^0} - 0 + 3 = 4\) nên đồ thị hàm số cắt trục tung tại điểm \(\left( {0;4} \right)\).
Từ đó suy ra đồ thị hàm số đã cho không đi qua gốc tọa độ.
Vậy ý c) và ý d) đúng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo đề bài, ta có hình vẽ sau:

Hợp lực tác động vào ba vật là \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OD} + \overrightarrow {OC} = \overrightarrow {OE} \).
Ta có \(\widehat {AOB} = \left( {\overrightarrow {OA} ,\,\overrightarrow {OB} } \right) = \left( {\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} } \right) = 110^\circ \). Suy ra \(\widehat {OAD} = 70^\circ \).
Áp dụng định lý côsin trong tam giác \(OAD\), ta có:
\(O{D^2} = O{A^2} + A{D^2} - 2OA \cdot AD \cdot \cos \widehat {OAD} = {9^2} + {4^2} - 2 \cdot 9 \cdot 4 \cdot \cos 70^\circ = 97 - 72\cos 70^\circ \).
Vì \(OC \bot \left( {OBDA} \right)\) nên \(OC \bot OD\). Suy ra \(ODEC\) là hình chữ nhật.
Do đó, tam giác \(OCE\) vuông tại \(C\) nên
\(O{E^2} = O{C^2} + E{C^2} = {7^2} + 97 - 72\cos 70^\circ = 146 - 72\cos 70^\circ \).
Suy ra \(OE = \sqrt {146 - 72\cos 70^\circ } \approx 11\).
Vậy độ lớn của hợp lực của ba lực đã cho bằng khoảng 11 N.
Đáp số: \(11\).
Lời giải
a) Đ, b) S, c) S, d) Đ.
Hướng dẫn giải
– Vì \(ABCD.A'B'C'D'\) là hình hộp nên các mặt của hình hộp này là hình bình hành.
Do đó, \(\overrightarrow {AD} = \overrightarrow {BC} = \overrightarrow {B'C'} = \overrightarrow {A'D'} \). Vậy ý a) đúng.
– Ta có \(\overrightarrow {DB} = - \overrightarrow {BD} \) và \(\overrightarrow {DB} = \overrightarrow {D'B'} = - \overrightarrow {B'D'} \).
Vậy các vectơ đối của vectơ \(\overrightarrow {DB} \) là \[\overrightarrow {BD} ,\,\,\overrightarrow {B'D'} \]. Do đó ý b) sai.
– Vì \(\overrightarrow {AB} = \overrightarrow {DC} = \overrightarrow {D'C'} \) nên \(\overrightarrow {AB} + \overrightarrow {DC} = \overrightarrow {D'C'} + \overrightarrow {D'C'} = 2\overrightarrow {D'C'} \).
Vậy ý c) sai.
– Ta có \(\overrightarrow {BB'} = \overrightarrow {AA'} ,\,\,\overrightarrow {CA} = \overrightarrow {C'A'} \). Suy ra \(\overrightarrow {BB'} - \overrightarrow {CA} = \overrightarrow {AA'} - \overrightarrow {C'A'} = \overrightarrow {AA'} + \overrightarrow {A'C'} = \overrightarrow {AC'} \).
Vậy ý d) đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.